Hua, Yuansheng and Mou, LiChao and Jin, Pu and Zhu, Xiao Xiang (2021) Unconstrained Aerial Scene Recognition with Deep Neural Networks and a New Dataset. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1-4. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554633.
PDF
492kB |
Abstract
Aerial scene recognition is a fundamental research problem in interpreting high-resolution aerial imagery. Over the past few years, most studies focus on classifying an image into one scene category, while in real-world scenarios, it is more often that a single image contains multiple scenes. Therefore, in this paper, we investigate a more practical yet underexplored task---multi-scene recognition in single images. To this end, we create a large-scale dataset, called MultiScene dataset, composed of 100,000 unconstrained images each with multiple labels from 36 different scenes. Among these images, 14,000 of them are manually interpreted and assigned ground-truth labels, while the remaining images are provided with crowdsourced labels, which are generated from low-cost but noisy OpenStreetMap (OSM) data. By doing so, our dataset allows two branches of studies: 1) developing novel CNNs for multi-scene recognition and 2) learning with noisy labels. We experiment with extensive baseline models on our dataset to offer a benchmark for multi-scene recognition in single images. Aiming to expedite further researches, we will make our dataset and pre-trained models available
Item URL in elib: | https://elib.dlr.de/142811/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Unconstrained Aerial Scene Recognition with Deep Neural Networks and a New Dataset | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554633 | ||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Convolutional neural network (CNN), multi-scene recognition in single images, crowdsourced annotations, large-scale aerial image dataset | ||||||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Hua, Yuansheng | ||||||||||||||||||||
Deposited On: | 24 Jun 2021 12:33 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page