Hua, Yuansheng und Mou, LiChao und Jin, Pu und Zhu, Xiao Xiang (2021) Unconstrained Aerial Scene Recognition with Deep Neural Networks and a New Dataset. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554633.
|
PDF
492kB |
Kurzfassung
Aerial scene recognition is a fundamental research problem in interpreting high-resolution aerial imagery. Over the past few years, most studies focus on classifying an image into one scene category, while in real-world scenarios, it is more often that a single image contains multiple scenes. Therefore, in this paper, we investigate a more practical yet underexplored task---multi-scene recognition in single images. To this end, we create a large-scale dataset, called MultiScene dataset, composed of 100,000 unconstrained images each with multiple labels from 36 different scenes. Among these images, 14,000 of them are manually interpreted and assigned ground-truth labels, while the remaining images are provided with crowdsourced labels, which are generated from low-cost but noisy OpenStreetMap (OSM) data. By doing so, our dataset allows two branches of studies: 1) developing novel CNNs for multi-scene recognition and 2) learning with noisy labels. We experiment with extensive baseline models on our dataset to offer a benchmark for multi-scene recognition in single images. Aiming to expedite further researches, we will make our dataset and pre-trained models available
| elib-URL des Eintrags: | https://elib.dlr.de/142811/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Unconstrained Aerial Scene Recognition with Deep Neural Networks and a New Dataset | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Juli 2021 | ||||||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/IGARSS47720.2021.9554633 | ||||||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Convolutional neural network (CNN), multi-scene recognition in single images, crowdsourced annotations, large-scale aerial image dataset | ||||||||||||||||||||
| Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||
| Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||||||
| Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Hua, Yuansheng | ||||||||||||||||||||
| Hinterlegt am: | 24 Jun 2021 12:33 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags