Dumitru, Corneliu Octavian and Schwarz, Gottfried and Datcu, Mihai (2021) Machine Learning Techniques for Knowledge Extraction from Satellite Images: Application to Specific Area Types. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII, pp. 455-462. ISPRS 2021, 2021-07-05 - 2021-07-09, Nice, France. doi: 10.5194/isprs-archives-XLIII-B3-2021-455-2021. ISSN 1682-1750.
PDF
1MB |
Abstract
When we want to extract knowledge form satellite images, several well-known image classification and analysis techniques can be concatenated or combined to gain a more detailed target understanding. In our case, we concentrated on specific extended target areas such as polar ice-covered surfaces, forests shrouded by fire plumes, flooded areas, and shorelines. These image types can be described by characteristic features and statistical relationships. Here, we demonstrate that both multispectral (optical) as well as SAR (Synthetic Aperture Radar) images can be used for knowledge extraction. The free availability of image data provided by the European Sentinel-1 and Sentinel-2 satellites allowed us to conduct a series of experiments that verified our classification approaches. This could already be verified in our recent work by quantitative quality tests.
Item URL in elib: | https://elib.dlr.de/142807/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Machine Learning Techniques for Knowledge Extraction from Satellite Images: Application to Specific Area Types | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2021 | ||||||||||||||||
Journal or Publication Title: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Volume: | XLIII | ||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B3-2021-455-2021 | ||||||||||||||||
Page Range: | pp. 455-462 | ||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Machine learning, target areas, flooding, fires, coastal and polar areas, Sentinel-1, Sentinel-2 | ||||||||||||||||
Event Title: | ISPRS 2021 | ||||||||||||||||
Event Location: | Nice, France | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 5 July 2021 | ||||||||||||||||
Event End Date: | 9 July 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||
Deposited On: | 24 Jun 2021 12:44 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page