Dumitru, Corneliu Octavian und Schwarz, Gottfried und Datcu, Mihai (2021) Machine Learning Techniques for Knowledge Extraction from Satellite Images: Application to Specific Area Types. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII, Seiten 455-462. ISPRS 2021, 2021-07-05 - 2021-07-09, Nice, France. doi: 10.5194/isprs-archives-XLIII-B3-2021-455-2021. ISSN 1682-1750.
PDF
1MB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/455/2021/isprs-archives-XLIII-B3-2021-455-2021.pdf
Kurzfassung
When we want to extract knowledge form satellite images, several well-known image classification and analysis techniques can be concatenated or combined to gain a more detailed target understanding. In our case, we concentrated on specific extended target areas such as polar ice-covered surfaces, forests shrouded by fire plumes, flooded areas, and shorelines. These image types can be described by characteristic features and statistical relationships. Here, we demonstrate that both multispectral (optical) as well as SAR (Synthetic Aperture Radar) images can be used for knowledge extraction. The free availability of image data provided by the European Sentinel-1 and Sentinel-2 satellites allowed us to conduct a series of experiments that verified our classification approaches. This could already be verified in our recent work by quantitative quality tests.
elib-URL des Eintrags: | https://elib.dlr.de/142807/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Machine Learning Techniques for Knowledge Extraction from Satellite Images: Application to Specific Area Types | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||
Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | XLIII | ||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B3-2021-455-2021 | ||||||||||||||||
Seitenbereich: | Seiten 455-462 | ||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Machine learning, target areas, flooding, fires, coastal and polar areas, Sentinel-1, Sentinel-2 | ||||||||||||||||
Veranstaltungstitel: | ISPRS 2021 | ||||||||||||||||
Veranstaltungsort: | Nice, France | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 5 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 9 Juli 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
Hinterlegt am: | 24 Jun 2021 12:44 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags