Raffin, Antonin und Deutschmann, Bastian und Stulp, Freek (2021) Fault-Tolerant Six-DoF Pose Estimation for Tendon-Driven Continuum Mechanisms. Frontiers in Robotics and AI, 8. Frontiers Media S.A. doi: 10.3389/frobt.2021.619238. ISSN 2296-9144.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.frontiersin.org/articles/10.3389/frobt.2021.619238/full
Kurzfassung
We propose a fault-tolerant estimation technique for the six-DoF pose of a tendon-driven continuum mechanisms using machine learning. In contrast to previous estimation techniques, no deformation model is required, and the pose prediction is rather performed with polynomial regression. As only a few datapoints are required for the regression, several estimators are trained with structured occlusions of the available sensor information, and clustered into ensembles based on the available sensors. By computing the variance of one ensemble, the uncertainty in the prediction is monitored and, if the variance is above a threshold, sensor loss is detected and handled. Experiments on the humanoid neck of the DLR robot DAVID, demonstrate that the accuracy of the predicted pose is significantly improved, and a reliable prediction can still be performed using only 3 out of 8 sensors.
elib-URL des Eintrags: | https://elib.dlr.de/142797/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Fault-Tolerant Six-DoF Pose Estimation for Tendon-Driven Continuum Mechanisms | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | April 2021 | ||||||||||||||||
Erschienen in: | Frontiers in Robotics and AI | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 8 | ||||||||||||||||
DOI: | 10.3389/frobt.2021.619238 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Frontiers Media S.A | ||||||||||||||||
Name der Reihe: | Soft Robotics | ||||||||||||||||
ISSN: | 2296-9144 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | pose estimation, fault-tolerant, data-driven, machine learning, continuum mechanism | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Raffin, Antonin | ||||||||||||||||
Hinterlegt am: | 28 Jun 2021 09:50 | ||||||||||||||||
Letzte Änderung: | 23 Okt 2023 09:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags