Nandy, Jay and Saha, Sudipan and Hsu, Wynne and Mong, Li and Zhu, Xiao Xiang (2021) Covariate Shift Adaptation for Adversarially Robust Classifier. In: The Ninth International Conference on Learning Representations, pp. 1-12. ICRL. The Ninth International Conference on Learning Representations, 2021-05-03 - 2021-05-07, Virtual event.
PDF
1MB |
Official URL: https://iclr.cc/virtual/2021/workshop/2129
Abstract
We show that adaptive batch normalization (BN) technique that involves re-estimating the BN parameters during inference, can significantly improve the robustness of adversarially trained models for any random perturbations, including the Gaussian noise. This simple finding enables us to transform an adversarially trained model into a randomized smoothing classifier to provide certified robustness for l2 norm. Moreover, we achieve l2 certified robustness even for adversarially trained models, learned using l∞-bounded adversaries. Further, adaptive BN significantly improves robustness against common corruptions, without any detrimental effect on their performance against adversarial attacks. This enables us to achieve both adversarial and corruption robustness using the same classifier.
Item URL in elib: | https://elib.dlr.de/142286/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||||||
Title: | Covariate Shift Adaptation for Adversarially Robust Classifier | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | May 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | The Ninth International Conference on Learning Representations | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 1-12 | ||||||||||||||||||||||||
Publisher: | ICRL | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | covariate shift adaptation, adversarially robust classifier | ||||||||||||||||||||||||
Event Title: | The Ninth International Conference on Learning Representations | ||||||||||||||||||||||||
Event Location: | Virtual event | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 3 May 2021 | ||||||||||||||||||||||||
Event End Date: | 7 May 2021 | ||||||||||||||||||||||||
Organizer: | ICLR | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Deposited On: | 21 May 2021 16:57 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page