Nandy, Jay und Saha, Sudipan und Hsu, Wynne und Mong, Li und Zhu, Xiao Xiang (2021) Covariate Shift Adaptation for Adversarially Robust Classifier. In: The Ninth International Conference on Learning Representations, Seiten 1-12. ICRL. The Ninth International Conference on Learning Representations, 2021-05-03 - 2021-05-07, Virtual event.
PDF
1MB |
Offizielle URL: https://iclr.cc/virtual/2021/workshop/2129
Kurzfassung
We show that adaptive batch normalization (BN) technique that involves re-estimating the BN parameters during inference, can significantly improve the robustness of adversarially trained models for any random perturbations, including the Gaussian noise. This simple finding enables us to transform an adversarially trained model into a randomized smoothing classifier to provide certified robustness for l2 norm. Moreover, we achieve l2 certified robustness even for adversarially trained models, learned using l∞-bounded adversaries. Further, adaptive BN significantly improves robustness against common corruptions, without any detrimental effect on their performance against adversarial attacks. This enables us to achieve both adversarial and corruption robustness using the same classifier.
elib-URL des Eintrags: | https://elib.dlr.de/142286/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||||||||||
Titel: | Covariate Shift Adaptation for Adversarially Robust Classifier | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Mai 2021 | ||||||||||||||||||||||||
Erschienen in: | The Ninth International Conference on Learning Representations | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-12 | ||||||||||||||||||||||||
Verlag: | ICRL | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | covariate shift adaptation, adversarially robust classifier | ||||||||||||||||||||||||
Veranstaltungstitel: | The Ninth International Conference on Learning Representations | ||||||||||||||||||||||||
Veranstaltungsort: | Virtual event | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 Mai 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 7 Mai 2021 | ||||||||||||||||||||||||
Veranstalter : | ICLR | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 21 Mai 2021 16:57 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags