Ebel, Patrick and Saha, Sudipan and Zhu, Xiao Xiang (2021) Fusing Multi-modal Data for Supervised Change Detection. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII, pp. 243-249. ISPRS. ISPRS 2021, 2021-07-04 - 2021-07-10, Nice, France / Virtual. doi: 10.5194/isprs-archives-XLIII-B3-2021-243-2021. ISSN 1682-1750.
PDF
5MB |
Abstract
With the rapid development of remote sensing technology in the last decade, different modalities of remote sensing data recorded via a variety of sensors are now easily accessible. Different sensors often provide complementary information and thus a more detailed and accurate Earth observation is possible by integrating their joint information. While change detection methods have been traditionally proposed for homogeneous data, combining multi-sensor multi-temporal data with different characteristics and resolution may provide a more robust interpretation of spatio-temporal evolution. However, integration of multi-temporal information from disparate sensory sources is challenging. Moreover, research in this direction is often hindered by a lack of available multi-modal data sets. To resolve these current shortcomings we curate a novel data set for multi-modal change detection. We further propose a novel Siamese architecture for fusion of SAR and optical observations for multi-modal change detection, which underlines the value of our newly gathered data. An experimental validation on the aforementioned data set demonstrates the potentials of the proposed model, which outperforms common mono-modal methods compared against.
Item URL in elib: | https://elib.dlr.de/142284/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||
Title: | Fusing Multi-modal Data for Supervised Change Detection | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2021 | ||||||||||||||||
Journal or Publication Title: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Volume: | XLIII | ||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B3-2021-243-2021 | ||||||||||||||||
Page Range: | pp. 243-249 | ||||||||||||||||
Publisher: | ISPRS | ||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | multi-data, fusion, supervised, change detection | ||||||||||||||||
Event Title: | ISPRS 2021 | ||||||||||||||||
Event Location: | Nice, France / Virtual | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 4 July 2021 | ||||||||||||||||
Event End Date: | 10 July 2021 | ||||||||||||||||
Organizer: | ISPRS | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||
Deposited On: | 21 May 2021 16:17 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page