Saha, Sudipan and Kondmann, Lukas and Zhu, Xiao Xiang (2021) Deep No Learning Approach for Unsupervised Change Detection in Hyperspectral Images. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3, pp. 311-316. ISPRS 2021, 2021-07-04 - 2021-07-10, Nice, France (virtual event). doi: 10.5194/isprs-annals-V-3-2021-311-2021. ISSN 2194-9042.
PDF
3MB |
Official URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2021/311/2021/isprs-annals-V-3-2021-311-2021.pdf
Abstract
Unsupervised deep transfer-learning based change detection (CD) methods require pre-trained feature extractor that can be used to extract semantic features from the target bi-temporal scene. However, it is difficult to obtain such feature extractors for hyperspectral images. Moreover, it is not trivial to reuse the models trained with the multispectral images for the hyperspectral images due to the significant difference in number of spectral bands. While hyperspectral images show large number of spectral bands, they generally show much less spatial complexity, thus reducing the requirement of large receptive fields of convolution filters. Recent works in the computer vision have shown that even untrained networks can yield remarkable result in different tasks like super-resolution and surface reconstruction. Motivated by this, we make a bold proposition that untrained deep model, initialized with some weight initialization strategy can be used to extract useful semantic features from bi-temporal hyperspectral images. Thus, we couple an untrained network with Deep Change Vector Analysis (DCVA), a popular method for unsupervised CD, to propose an unsupervised CD method for hyperspectral images. We conduct experiments on two hyperspectral CD data sets, and the results demonstrate advantages of the proposed unsupervised method over other competitors.
Item URL in elib: | https://elib.dlr.de/142283/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||
Title: | Deep No Learning Approach for Unsupervised Change Detection in Hyperspectral Images | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2021 | ||||||||||||||||
Journal or Publication Title: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | V-3 | ||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2021-311-2021 | ||||||||||||||||
Page Range: | pp. 311-316 | ||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | deep learning, unsupervised change detection, hyperspectral images | ||||||||||||||||
Event Title: | ISPRS 2021 | ||||||||||||||||
Event Location: | Nice, France (virtual event) | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 4 July 2021 | ||||||||||||||||
Event End Date: | 10 July 2021 | ||||||||||||||||
Organizer: | ISPRS | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||
Deposited On: | 21 May 2021 16:13 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page