elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Recognition and Reproduction of Force-based Robot Skills via Learning from Demonstration

Origanti, Vamsi Krishna (2021) Recognition and Reproduction of Force-based Robot Skills via Learning from Demonstration. DLR-Interner Bericht. DLR-IB-RM-OP-2021-67. Masterarbeit. RWTH Aachen University. 116 S.

[img] PDF
13MB

Kurzfassung

With an increase in the demand for complex tasks in industrial applications such as assembly tasks, industries foresee demand for robots with unique abilities. For example, there is a requirement for more customizable robots and adapt to dynamic changes in the environment. Interactive tasks are such complex tasks where robots should adapt to changes to interact with the environment. Such tasks are also called contact-based tasks or compliant tasks. The robot performing compliant tasks should be able to possess the skills associated not only with kinematic movements but also force profiles and corresponding control schemes. Programming a robot to execute contact-based tasks can be time-consuming, where usually expert knowledge is required. Learning from Demonstration (LfD) provides an intuitive way to deal with such complex tasks with minimal programming effort. As such, demonstrations might not always lead to an efficient behavior, but the intent of the user can be recognized based on the motion and force data. The goal is to extract the real intent of the user, which is to exhibit contact-based skills that are adaptable to changes and not simply replay the demonstration. Skill templates need to be developed that are parameterized by the demonstration to reproduce the skill efficiently. This thesis aims to provide a methodology to identify such skill templates for commonly used industrial tasks such as slide, e.g., to surface polishing, touch to slight contact to identify the objects or constraints, press to apply forces on to the environment for e.g., pressing a button and contouring to perform tasks such as deburring of manufactured parts. This thesis presents methods employed to identify and extract these features required to represent a skill template capable of reproducing desired skills. Additionally, a control strategy is derived for hybrid position-force control to reproduce the skills from skill templates. The methodologies employed are evaluated, and the implications are inferred by reproducing contact-based skills under PyBullet simulation environment configured with a LWR-IV robot.

elib-URL des Eintrags:https://elib.dlr.de/142206/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Recognition and Reproduction of Force-based Robot Skills via Learning from Demonstration
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Origanti, Vamsi Krishnavamsi.origanti (at) rwth-aachen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 April 2021
Referierte Publikation:Nein
Open Access:Ja
Seitenanzahl:116
Status:veröffentlicht
Stichwörter:Learning from Demonstration, Programming by Demonstration, skill parameterization, task parameterization, constraint extraction, force-based skills, contact-based skills, contact skills, intuitive programming, kinesthetic teaching, skill extraction, skill recognition, hybrid control, position-impedance control, subspace control, compliant frame, physics simulation, pybullet
Institution:RWTH Aachen University
Abteilung:Institute of Mechanism Theory, Machine Dynamics and Robotics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Intuitive Mensch-Roboter Schnittstelle [RO], R - Interagierende Robotersteuerung [RO], R - Roboterdynamik & Simulation [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Eiband, Thomas
Hinterlegt am:07 Mai 2021 18:32
Letzte Änderung:01 Jan 2023 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.