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the environment. Interactive tasks are such complex tasks where robots should adapt
to changes to interact with the environment. Such tasks are also called contact-based
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The goal is to extract the real intent of the user, which is to exhibit contact-based skills
that are adaptable to changes and not simply replay the demonstration.
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1. Introduction

In recent years, the growth of usage of robots is increasing very rapidly, especially in
industries. The world is witnessing the advantages of robotization in a factory setting,
and demand for robots increased and spread across other sectors such as logistics, ser-
vice robotics, medical robotics, etc. However, despite the growth and demand, robots
are most commonly preprogrammed and hard to realize automatic skill learning and
adapt to environmental changes. A skill is a predefined robot behavior parameterized by
demonstrations [PNA16][ESL19]. Recently, a lot of consideration towards skill learning
for robots has increased. Learning contact-based skills is further challenging as it requires
learning and adapting the interaction behavior towards the environment. This thesis aims
to develop a framework to learn predefined skills that deal with contact-based or com-
pliant tasks. The intention to learn such predefined skills is to build a skill library for
the most commonly used skills in industries. This library can be used to frame task-level
programming by grouping these skills.

Robots that are involved in tasks where they undergo physical interactions with the envi-
ronment, an active force application also needs to be considered. Such complex tasks can
be defined as Force-based tasks, also known as Compliant tasks. The robots performing
compliant tasks should be able to possess the skills that associate not only with kine-
matic movements but also force profiles and corresponding control schemes. However, it
gets more challenging to preprogram robots for all circumstances. Force-based tasks are
relatively hard to program compared to only kinematic tasks.

This thesis work employed Learning from Demonstration (LfD) techniques that provide
scope for an intuitive way to deal with such complex tasks with minimal programming
effort. The main idea is to develop a methodology that robots learn skills from the
demonstrated data, ideally from a single demonstration that allows robots to reproduce
the skill and adapt to dynamic changes in the environment. On this note, the main focus
of this thesis is to develop a methodology to learn contact-based skills and be able to
reproduce by using the LfD technique. This chapter discusses the background, including
the goals, objectives, and contributions of the thesis work.
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1.1. Problem Statement

Due to the high demand for contact-based applications using LfD, compliance control
strategies were developed along with position control for replicating the demonstrated
tasks. Learning of force-based tasks from the demonstration were addressed well in [CH18]
[KGS15] [SMK15]. The state-of-the-art methods in contact-based tasks mentioned in
[CH18] addressed the limitations of conventional methods when forces are time-varying
and multidimensional. However, these approaches are formulated as non-specific to each
skill and more towards a generalized way of dealing with contact-based problems. Even
though this generalized behavior can deal with the contact-based learning problem, some
tasks such as peg-in-hole applications as mentioned in [BD96] are highly complex and
demand more specific approaches, which are different from other tasks. Hence, an LfD
framework for skill-based learning is proposed here to address this issue. The main mo-
tivation behind skill-based learning is to provide an intuitive way of programming robots
in industries by providing a set of skill libraries. This reduces the programming effort and
does not require expert knowledge to program complex industrial assembly tasks. Bøgh
et al. in [BNP12] claim that the skills are the foundation for task-level programming of
robots, which can provide huge customization and flexibility. This idea of a skill-based
learning framework for contact-based tasks opens up challenges like

1. How to define and identify such skills?

2. What are the features to be extracted and how to perform skill parameterization?

3. How to implement the above mentioned compliant control methods to skills?

4. How to choose the control sequence specific to skill?

5. How to embed complex skill-specific algorithms, for example, dedicated algorithms
for peg-in-hole applications?.

This project’s scope, methodology, and work plan to address these challenges are explained
further in subsequent sections.
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1.2. Goals and Objectives

This thesis aims to develop a Skill-based learning framework for robots to perform contact-
based tasks that are learned by Kinesthetic teaching. The motivation is to develop a
framework for predefined skills, which are commonly used in industries. And to propose
a user-friendly way to teach complex compliant tasks intuitively without any prior knowl-
edge and with minimal demonstrations, ideally from a single demonstration. One possible
way to achieve this goal is by employing methods that are engineered more specifically
for each skill rather than adopting a generic way for all skills for learning and extract-
ing parameters or features. Because the skill behavior would vary among skills and such
generic approaches would fail to satisfy skill specific requirements.

As detailed in the problem definition, this idea of developing skill-based learning raises
challenges on how to realize the working methodology of this thesis. Considering those
challenges, the goal of the thesis is to develop a framework for skill-based learning that can
be achieved in five steps 1)Skill Definition, 2)Skill Identification, 3)Skill Parameterization,
4)Controller Implementation, and 5)Skill Reproduction.

Defining and identifying Skills are not in the scope of this thesis work. Existing works
on defining and identifying skills from demonstration data are used as pre-steps. After
identifying the skill, the major works can be described in three tasks:

1. Define a meaningful set of contact primitives for skills and extract their parameters
such that they allow the parameterization of a controller.

2. Define and implement the necessary controllers which can optimize the reproduction.

3. Execute the sequenced contact primitives and evaluate their optimization and gen-
eralization capabilities compared to a simple replay of the demonstration.

The goals and main objectives are illustrated in Fig.1.1.

Skill Definition

• Define Skills that
are commonly used
in industries

• Example:
• Touch
• Press
• Slide
• Contour

Skill 
Identification

• Identify skills from
demonstrated data
using classification
algorithms.

Skill 
Parameterization

• Identify features for
each predefined
skill.

• Extract features
specific to each
skill.

• Identify and extract
suitable movement
primitive to each
skill.

• Design state
sequence to
reproduce each skill

Controller 
Implementation

• Design and
implement Hybrid
control strategy for
position and force
control based on
identified features
for each skill.

Skill 
Reproduction

• Trajectory
Generation from
learned MPs.

• Generalization
• Adaption
• Sequence the states

designed for each
skill

• Sequence the
controller
switching.

• Reproduce skills.

Figure 1.1.: Project Goals and Objectives
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1.3. Contributions

Major contributions of this thesis to develop a framework for Skill-based learning of
contact-based tasks are enumerated as below:

1. Proposes a methodology for Skill parameterization of each predefined skills. Here,
as a part of the thesis work, four important preliminary skills: Touch, Press, Slide
and Contour are chosen. This methodology can be extended to other skills with
minimal modifications.

2. Provides a theoretical analysis of skill learning and Feature Identification of impor-
tant features that are enough to represent a contact-based skill. These identified
features are the foundation of the thesis work to learn a skill that can reproduce the
desired task.

3. Proposes a theoretical formalism for the Feature Extraction of the identified features
for each skill. Identified features are extracted methodologically that vary between
each skill.

4. Establishes motion encoding by learning Dynamic Movement Primitives (DMP).
Trajectory generation from learned DMPs is based on Linear Weighted Regression
(LWR). DMPs help to adapt to the changes in the initial and goal points. This
feature of DMPs is being used for devising generalization and adaption capabilities
for each skill.

5. Provides a control strategy for a hybrid position-force controller that also facilitates
rigid transformation between frames. This control strategy helps us to choose control
parameters and switch sequence between position and force control for each dimen-
sion, most importantly, in the task frame. This is an important criterion required
to reproduce skills.

6. Setup of simulation environment for a robotic system using PyBullet python pack-
age, which offers simulations that includes forces and torques. PyBullet is interfaced
with the hybrid controller implemented in MATLAB Simulink to control the robot
loaded into the environment. The simulation environment configured can further be
used for a variety of robotic systems, not limiting to the robot model used only in
this thesis work.



2. Background

This section provides a brief background relevant to skill learning and covers the basic
introduction of some important topics such as Learning from Demonstration, Movement
Primitives.

2.1. Learning from Demonstration

Learning from Demonstration(LfD), also known as Programming by Demonstration (PbD),
is a disruptive methodology that offers robots to learn manipulation behaviors from ob-
serving the motions executed by human demonstrators. The aim is to teach robots in
a natural and intuitive way without any prior programming knowledge. In recent years,
LfD has consequently received a great deal of attention in the field of Robotics and the
present-day goal of LfD is to learn a policy or control program of a task that is robust to
noise, initial conditions, and generalization capability to be able to handle variations in
tasks or environments.[BG13]

The main principle of robot LfD is that users can teach tasks to the robot without
programming, which can be carried out in three steps: Demonstration, Skill Acquisition,
and Execution as shown in Fig.2.1.

Robot Skill Acquisition Robot ExecutionDemonstration

Sensing Encoding Reproducing

Figure 2.1.: Learning from Demonstration

2.1.1. Demonstration

Human demonstrations are captured to learn the tasks or skills, which include different
strategies like Kinesthetic Demonstration, Motion-Sensor Demonstration, and Teleoper-
ated Demonstration [ZH18].
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In Kinesthetic Demonstration, the robot arm is moved physically by a demonstrator in
Zero Gravity mode, or back drive mode of robots [SMK15]. During the demonstration, the
movements are directly recorded with the position, orientation, and wrench data, which
are used further to process and encode movements. The main advantage of Kinesthetic
demonstration is that the data can be recorded directly without any modification or
transformation like pose estimation, correspondence mapping between human pose and
robot, etc., as required in other strategies [ZH18].

The Motion-Sensor Demonstration requires a motion capture system that often employs
visual tracking of markers that are positioned at the human body to record demonstrated
movements. Imitation learning is carried out by mimicking the recorded motions by a
robot using different types of computer vision strategies, which are more often used in
the case of humanoid robots. This methodology for capturing demonstration comprises
three components: human motion measurement, motion mapping, and motion control
[CL18][ZH18].

Teleoperated Demonstration is similar to Kinesthetic Demonstration, wherein the direct
mapping of human motions to the robot is possible. During the teleoperation demon-
stration, the teacher usually manipulates the robot through an input device, standing far
away from the robot. Considering assembly tasks, when a human demonstrator performs
the assembly motions, the movement information of the human arm is fed into a real-
time tracking system so that the robot can mimic the movements of the demonstrator.
Teleoperation has the benefit of setting up an effective correspondence and activity tech-
nique among humans and robots. It has been applied in different applications as listed
in [ZH18] including remote control of a mobile robotic assistant, performing an assembly
task, performing a spatial-positioning task, demonstrating grasp preshapes to the robot,
transmitting both dynamic, communicative information between demonstrator and robot
on a collaborative task, picking and moving tasks.

2.1.2. Robot Skill Acquisition

The demonstrated task is preprocessed to be used for learning tasks and skill acquisition.
The main goal of this step is to meaningfully interpret and learn the movements from the
demonstration data that can be used for further processing to reproduce the task. Skill
Acquisition consists of three main phases as shown in Fig.2.2 [CL18] [XHL19].

In the Sensing Phase, demonstrated motion trajectories including position, forces, and
actions are interpreted and preprocessed. This step overlaps with the demonstration,
wherein the data is recorded while performing a demonstration in real-time. The recorded
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Sensing

Data Acquisition
• Force-Torque Sensors
• Motion Capture

Systems

Data Preparation
• DTW, PCA,

Segmentation
• Feature Identification
• Feature Extraction

Encoding

Model
• Movement Primitives

• DMP, GMM, HMM

Regression
• LWR
• GMR

Optimization

Reproducing

Trajectory Generation

Generalization

Adaption

Figure 2.2.: Learning Process

data is processed to frame a meaningful set of parameters that can be used in learning,
for instance, dimensionality reduction, feature extraction, and data fusion. Sensing is per-
formed differently based on the selected Demonstration strategy. In the case of Kinesthetic
Demonstration, the sensing is performed by tactile and position sensors mounted on the
robot. In contrast, in Motion-Sensor Demonstration, sensing is performed by kinematic
pose estimation using optical sensors and vision tools [ZH18] [CL18] [XHL19]. For a better
understanding of data, data preparation and preprocessing steps are carried out before
encoding the movements. Data preprocessing such as Dynamic Time Warping(DTW) for
aligning trajectories, Principal Component Analysis (PCA) for dimensionality reduction,
segmentation for splitting trajectories simplify encoding for complex tasks. Features are
identified and extracted that are required in the sensing phase after acquiring data from
demonstrations for further processing during learning and reproducing. These features
are often referred to as skill templates that enhance the interpretation of data more spe-
cific to the task and allows to learn complex skills with minimum computational efforts
[XHL19][LKY13].

Encoding is a process of mapping the movement trajectories and motions obtained by
human demonstrations to a meaningful mathematical model, which is learned to regen-
erate desired motion trajectories. The mathematical model of encoded motions is also
referred to as Movement Primitives. In contrast to simply saving demonstrated trajec-
tory data, encoding motions in the form of movement primitives offers a salient feature
that is generalization capability to adapt to the dynamic changes for new goals and initial
points. MPs can also be represented as building blocks that can be organized in series and
parallel to create more complex behavior [CL18]. Different types of such strategies and
Movement Primitives as a representation of motions under learning scenario is explained
in detail in [CL18]. The type of MP most often used is Dynamic Movement Primitives
(DMP) [INH13]. Schaal et al further explored DMP under learning scenarios in [SPN05]
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[SPN03]. DMP is a nonlinear dynamic model to encode the trajectories of the demon-
strated task. A second-order differential equation is used to encode the desired MPs as a
typical spring-damper system with nonlinear forcing terms [INH13] [CL18]. Other Move-
ment Primitive representations are Gaussian Mixture Models (GMM), Gaussian Mixter
Regression (GMR), and Hidden Markov Model (HMM) are further explained in detail in
the following section. In [CL18] a detailed explanation and comparison of these models
are provided.

Reproducing the encoded skills is quite challenging and it is required to reproduce each
skill such that it is robust to perturbations. Additionally, each skill should adapt to
the task requirements. During the reproducing phase, optimal trajectory generation,
generalization, and motion reconstruction based on task requirements are carried out. For
instance, MPs are capable of generating trajectories with the change in goal points. This
change in goal points is adapted to the environment based on skill or task requirements.
The optimized and generated motion adapted to the task or skill is then utilized to perform
the desired task in the robot execution level.

2.1.3. Robot Execution

Different learning control strategies as a problem of estimating control policies for discrete
dynamical systems are described comprehensively in [CL18]. The reference trajectories
generated in the reproducing phase of skill acquisition are tracked and controlled with a
controller in order to execute the learned task from the demonstration.

Impedance control which is based on a spring-damper system, is a commonly used con-
trol strategy in LfD methods for controlling learned positions from MPs. However, for
compliant tasks, where the influence of forces is considered, simple impedance control is
not sufficient. Though the impedance controller can apply forces onto the environment,
additionally, a feedback force controller is required to track the forces extracted from skill
acquisition when the robot is in contact with the environment. Early works on embed-
ding force control along with impedance control as in [LKY13] [SMK15] gave significant
results. Conkey et al. in [CH18] proposed a robust way of dealing with hybrid position-
force control. Control parameters should be extracted and engineered based on the task
specification and demonstrated data. Also, a control sequence needs to be chosen for MPs
such that the robot will execute the reproduction of demonstrated contact-based skills.
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2.2. Movement Primitives

Humans are capable of interpreting and reproducing object manipulation and articu-
lated tasks that are underlying with motor skills. However, in robots, tasks are usually
performed by executing precise movements that are preprogrammed in a point-to-point
manner. There are limitations to program complex tasks in robots that humans are able
to perform. Therefore, there is a requirement for a symbolic and systematic representa-
tion of movements. Such complex movements underlying motor skills can be obtained
by grouping elementary motion representations called Movement Primitives [SL13]. MPs
are mathematical representations of motion, where movements are encoded into a mathe-
matical model by learning from the motion data such as position, orientation, and forces
profiles recorded during the demonstration. MPs are considered basic building blocks or
elementary movements that can be combined sequentially to form a complex motion.

Conventionally, the encoding of a movement has been done by utilizing splines, and Bézier
curve [Ude93] [HAK03]. However, these methods have limitations to learn skills, limited
capabilities for generalization and adaption and have no control on other important vari-
ables like velocity and acceleration. In recent years, the focus has shifted to statistical
models like GMM, HMM, GP etc. [CFS10] [MGH09] [CGB07] [NP08] and dynamical
system models [HGC08] [KB10] [KB11] like SEDS and DMP to encode human demon-
strations.

In the context of LfD, MPs are the representation of movements that are learned from
demonstration and should also possess the ability to generate trajectories that support
generalization and adaption to novel situations. Hence, trajectory generation from the
model can be seen as a regression problem that is able to generate motion considering new
initial and goal points. Many algorithms emerged to encode movements, among which
DMM, GMM, HMM, and their variants have gained considerable attention under the LfD
context to represent motions. In this chapter, the role of MPs is explained in LfD, skill
learning, and introduces different types of MPs aforementioned.

Learning a movement primitive is to find a control policy that is specific to a task. For
instance, in DMPs that represents movements, a control policy is derived on a nonlinear
dynamic systems guarantees reaching desired goal position. Consider a dynamical system
represented in the form of differential equation [SPN03]:

ẋ = f(x, α, t) (2.1)

Once the policy is learned for a given task, which represents the kinematic planning of
the motion, trajectories can be generated directly to existing states or novel situations
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with change in initial and goal states. In simple words, the policy learned depicts the
movement between any two points given. The output of the MPs is subsequently used as
reference commands of an appropriate controller in each dimension, as shown depicted in
Fig.2.3.
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Figure 2.3.: Movement Primitive with Controller, Source:[SPN03]

As stated earlier, there exist different ways to represent motion as MP. Following are some
of the well-known methods often used to represent motion as Movement Primitives in LfD
and skill learning scenarios.

2.2.1. Locally weighted Regression

Locally Weighted Regression Learning (LWR) is a non-parametric regression method
[AMS97]. The regression problem to generate output data completely relies on data
points that are close to the input values. Regression can be achieved by extending the
weighted least squares performed on a data set with a superposition of basis function,
most commonly Radial basis function (RBF). It targets to fit a nonlinear problem by
splitting and solving locally by linear regression. Further explanation about theoretical
formulation is given in A.1.1

Sample trajectory learning using LWR is shown in Fig.2.4 with different degrees of a poly-
nomial. The basis functions were chosen accordingly. Detailed explanation and examples
are provided in the [CL18].

2.2.2. Gaussian Process Regression

In Gaussian Process Regression (GPR), considering the regression problem in the form
of y = f(x) + η, where f is an unknown function that should be estimated and η is
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Figure 2.4.: Sample Trajectory learning using LWR, Source:[CL18]

an additional noise. Consider a data set obtained from the demonstration consisting
of input and output pair, and the goal is to evaluate the unknown function f using
probabilistic distribution. The input and output mapping learned is called Gaussian
Process Regression. Here, each observation in the data can be considered as samples
drawn from a multivariate Gaussian Distribution. Which means, the unknown function
f(x) that is associated to the inputX is a sample drawn out of a multivariate gaussian, for
example N (µ (x) ,K), whereK is a covariance matrix also called as Gramm matrix that
is defined using kernel function k(x1, x2) that provides covariance between two samples of
dataset.[CL18]. Further details of the mathematical formulation is provided in A.1.2.

Figure 2.5.: Sample Trajectory learning using GP, Source:[RW]

2.2.3. Gaussian Mixture Regression

Gaussian Mixture Regression (GMR) is a regression method to learn movement primi-
tives in demonstration data that is encoded as a probabilistic model on the joint proba-
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bility density of data in the form of Gaussian Mixture Model (GMM) or Hidden Markov
Model (HMM)[CGB07]. Estimation of the model is performed by using the Expectation-
Maximization (EM) procedure. The regression function is then computed from the joint
probability density model learned from data. GMR is also a popular probabilistic method
for movement representation, which is based on linear transformations and conditional
properties of multivariate normal distribution [CL18]. The computational complexity of
GMR is smaller as compared to GPR as it does not estimate the regression function di-
rectly but computes the regression function from the model. Another advantage is that
the computation time is independent of the sample space of data.

The data to be learned can be multidimensional, and the expectation can be computed
by considering multivariate distribution. If multiple demonstrations are recorded and
expected to learn from them, it is hard to define a joint probability over the entire dataset.
To overcome this issue, often Dynamic Time Warping as a preprocessing step is considered
before modeling data into GMM [MGH09]. Overview of GMR process with GMM or
HMM can be shown in Fig.2.6

Pre-processing
steps

HMM

Optimization
(Optional)

GMM

Data
GMR

DTW

Parameters and 
Input Query

Trajectory

EM/BIC

EM/BIC

Figure 2.6.: Overview of GMR process

Figure 2.7 shows the formulation of GMR using the GMM model in 1-Dimension. GMR
can cover multiple regression methods from simple linear regression to multivariate and
kernel-based regression. [CL18]. Refer A.1.3.1 for the mathematical theory behind
GMM.

Another way to model data to use with GPR is Hidden Markov Model (HMM). Similar
to GMM, HMM also comprises a mixture of Gaussians but is represented as states. Along
with prior, mean and covariance matrix, model comprises a transition matrix that defines
transition probability between the states. For further explanation on the theory of HMM,
refer A.1.3.2.

Nevertheless, both GMM and HMM would require to specify the number of Gaussians to
be used to model the data. Bayesian Information Criteria (BIC) is one of the com-
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Figure 2.7.: Gaussian Mixture Regression on 1D trajectory with GMM model,
Source:[CL18]

mon approaches that suggest the optimal number of Gaussians that can be utilized
[CGB07][MGH09].

After encoding the dataset into either of the models, GMM or HMM, GMR is used to
obtain the target output. In this context, the target trajectory represents the movements
for a given input query. The Gaussians that establish the model can be considered as
attractors that offer a minimized representation of the movements. For GMMs, time is
given as input [CGB07][MGH09], while for HMMs it is the current state as explained in
[CFS10]. The result is determined by linear combinations of a mixture of the Gaussians.
For GMM, the weighting of each Gaussian depends on their likelihood. For HMM, it is
based on transition probability that is based on the previous state.

2.2.4. Movement Primitive learning based on Dynamical Systems

Though GMR with GMM or HMM show considerable results and are used in imita-
tion learning, these methods cannot generalize to novel situations. For instance, when
a starting point is too far from the starting point of the demonstration, the final trajec-
tory generated may not follow the intended path shown in Fig.2.8a. To overcome this
issue, [CFS10] employed a spring-damper-framework, which enables the trajectories tend
to converge to the intended one that was demonstrated, as shown in Fig.2.8b. However,
this method brings additional challenges to maintain stability, lack of which may cause
oscillations and unstable dynamics if gains were not appropriate.

Stable Estimator of Dynamical Systems Stable Estimator of Dynamical Systems
(SEDS) is another method to represent movements but as a globally stable system that en-
codes the whole attractor landscape in the demonstrated data [KB10]. SEDS depends on
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(a) (b)

Figure 2.8.: The influence of a spring-damper-system on a 2 Dimensional GMR. (a)
GMR without spring-damper, (b) With spring-damper system. Black lines
indicate demonstraions, blue line indicates reproduction and red line indi-
cates reproduction with different start point.(Source: [CFS10])

Gaussian mixture modules to model and generates a trajectory that is close to the demon-
stration. However, in contrast to the methods covered so far, SEDS focuses on global
stability. A function that generates motion or trajectory is defined globally and converges
asymptotically towards the target. Like GMM, SEDS comprises the mixture of Gaussian
with prior, mean, and covariance as model parameters, and transition matrix is not con-
sidered [KB10]. Same GMR representation as explained earlier can be used to extract
an autonomous system by computing velocity commands iteratively P(ẋ|x) from a joint
distribution of position and velocity data P(x, ẋ) encoded as GMM [HGC08][CL18].

x̂ =
K∑
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hi(x)(
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Σẋx
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i )−1 x+
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SEDS with GMM model and its parameters are depicted in Fig.2.9.

Figure 2.9.: Visualization of SEDS with 1D GMM and its parameters, Source:[KB11]
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Dynamic Movement Primitives

Dynamic Movement Primitives is a popular methodology for encoding movements under
LfD and imitation learning paradigm in robotics. DMP is based on a dynamic system
modeling approach that comprises a spring-damper system with nonlinear forcing terms,
which is an approximation function[INH13]. The goal is to obtain the approximation
function by learning from the demonstration data. LWR technique can be employed
to obtain approximation function. DMP system comprises three elements as shown in
Fig.2.10.

(2) Nonlinear Function 
Approximator (RBF)

(1) Transformation System
1st Order Dynamics+ ForcingTerm

(3) Canonical System

Discrete Periodic

Trajectory of Position, 
Velocity and Acceleration
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(LWR)
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Data

New Initial and 
Goal States

Figure 2.10.: Principle of Dynamic Movement Primitives, Source:[PKM13]

A stable dynamical system that is represented in the Transformation System shown in
Fig.2.10 is a critically damped spring-damper model with forcing term that converts a
desired force and goal position into the output commands as position, velocity, and accel-
eration. These commands generated at every sample timestep can be fed into an appro-
priate controller, as shown in Fig.2.3. A forcing term is obtained in the Transformation
System from the nonlinear function approximator utilizing the phase variable generated
from the canonical system. Usually, any nonlinear function approximator can be used.
Most commonly, LWR with a nonlinear basis function is used. However, other approxima-
tion functions like GMM, GMR, RBF are also viable. The canonical system is responsible
for substituting time with phase variable. The phase variable helps to maintain a system
as time-invariant and is also used for synchronization during trajectory generation when
multidimensional data is considered.

From the analysis of aforementioned methods to learn a movement primitives, as a part
of this thesis, DMPs are chosen for learning the contact-based skills as DMPs are stable
nonlinear dynamic systems with attractor behaviour and posses the ability to generalize to
novel situations by changing the initial and goal states. Another important characteristic
of DMP is that the system exhibits desired behavior irrespective of initial conditions. Its
time invariance property further motivating the use of DMPs in this thesis. A detailed
literature review on MPs is presented in chapter 3. A detailed explanation and working
model of DMP is given in section 4.1.3





3. Related Work

Different methodologies exist that target skill learning for contact-based skills. Usually,
these methodologies are different in their assumptions about the tasks intended to achieve
or findings or focus on various learning methods. This chapter provided a survey on
other methods existing in the context of LfD for skill learning, movement primitives, and
control strategies focusing on contact-based tasks. Furthermore, the considered methods
are classified, summarized and differentiated from the new approach taken in this thesis.

3.1. Learning from Demonstration

Learning from demonstration covers a wide range of topics with different learning methods
and machine learning techniques. Researchers employed different viewpoints under LfD
context based on their expertise, problem statement, and intended task [BG13][LRS15].
This section provides a brief study on existing research works in LfD, focusing on topics
relevant to this thesis.

The term Imitation Learning was deeply studied and analyzed by Bakker et al. in
[BBK96]. Bakker identified three processes involved in imitation learning as 1)Observa-
tion to observe and perceive the demonstrated actions. Observation is similar to sensing
phase, 2) Encoding and 3) Execution as explained in Sec.2.1.

LfD can be adopted at multiple levels, like low-level motor skills that learn and reproduce
movements to the high-level tasks representing symbolic reasoning. In other words, LfD
can be applied from simple imitation of tasks to high-level abstractions [BG13]. To
achieve robot LfD, three main challenges were identified that need to be addressed, such
as correspondence problem, generalization and robustness against perturbation. In general,
the existing research under LfD focused on solving these three challenges.

Different demonstration modalities as explained in section 2.1 should be considered ap-
propriate methods to deal with the correspondence problem. Comparatively, Kinesthetic
demonstration simplifies the challenge of correspondence problem over other methods.
However, there are limitations in the Kinesthetic teaching method as the user does not
execute the task but demonstrates the task by physically holding the robot. This limits
to teach complex tasks as it is difficult to articulate motions [ZH18].

Another important characteristic of LfD is that robots are capable of acquiring skills that
should be able to adapt to a novel situation. A common approach is to map the skills
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with task variables such as initial and goal points and then perform regression to generate
movements based on new task variables []. An alternative method for generalization is
to encode movements considering multiple coordinate systems as explained in [UUN15]
[Cal16] [PL18]. Task parameterized movement primitives as in [Cal16] encodes movements
from the perspective of multiple coordinate systems. This enables the adaptation of
the variations in each frame’s task results in better extrapolation capabilities to adopt
movements in novel situations. A similar viewpoint needs to be adopted for the contact-
based tasks to consider coordinate systems to encode movements. However, in contact-
based tasks, coordinate systems represents compliant frames and should be dealt with
careful consideration specific to skill [MGK20] [CH18] [KGS15].

In recent years, approaches like learning by interaction or iterative learning or active
learning gained considerable attention in the field of LfD [CT12]. Most of the develop-
ments in LfD concerning the development of learning and control algorithms considering
enough data is available. In contrast to these methods, active learning can be used when
enough data is not available to deal with novel situations. In active learning, robots up-
date learning policies by iterative interaction with the user. The data provided can be
exploited and quality can be increased iteratively by querying uncertainties while learning
new skills.

The use of LfD methodologies in Human-Robot collaboration has also increased in recent
years, for example, shared control behaviours with humans such as collaborative trans-
portation of objects as presented in [EGC09] and industrial assembly tasks as given in
[EGC09] [EGC09]. For further study of LfD in HRC tasks, Jangqon et al. presented a
detailed comparison study and survey of LfD in Human-Robot collaboration in [Lee17].

Research Works like [ST16][TOK07] show that the use of LfD methodology for assembly
tasks is one of the fastest and efficient ways to program robots from low-level tasks to
abstract level planning. Takamatsu et al. in [TOK07] used LfD methodology for assembly
tasks and proposed a method to identify the assembly tasks from human demonstrations.
They defined the skills, sub-skills, and transitions in assembly tasks like peg-in-hole inser-
tion and performed learning from human demonstrations. In [ZH18], Zhu et al. presented
a survey and in-depth analysis of Robot Learning from Demonstrations in assembly tasks.
Zhu et al. explained the use of LfD in robotic assembly and presented a detailed study
on research problems like Pose estimation, force estimation, assembly sequencing. Also
detailed about types of demonstration, extraction of movement primitives and metrics of
imitation for robotic assembly under LfD context. This analysis on industrial assembly
tasks helps us to understand the thesis requirements to reproduce contact-based skills.
This thesis focus on learning contact-based skills learned from human demonstration
but not collaboration and executed without iterative or interactive learning. This thesis
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mainly focus on skills-based learning in contrast to generic approaches. This thesis for-
mulate a mechanism for defining specific procedures that are more engineered for learning
a specific skill than adopting a generic way.

3.2. Movement Primitives

Movement representation is a key research topic under Learning from Demonstration.
Such representation aims to encode movements and also able to synthesize them. The
term Movement Primitives is often referred to such representations as explained earlier in
Sec.2.2. Movement Primitives can basically be categorized into Statistical model methods
and Dynamic System model methods. Also some research works exist on the combination
of these methods [PL18] [Cal16]. In this section, existing research on these methods
are presented and later conclude to choose a suitable method for the objective to learn
contact-based skills.

Statistical model based methods are often referred to as Probabilistic approaches that
use probability distributions to encode the movements [CGB07][CFS10][RCC16][Cal16].
The variance in the distribution that defines the variability of movement obtained by
learning from data is an important parameter that reflects the behavior of the motion
representation while reproduction, such as, generalization and natural way of movement
reproduction. Calinon et.al in [CGB07][CFS10] proposed a probabilistic approach Gaus-
sian Mixture Regression(GMR) as explained in 2.2 for trajectory representation. Rozo
et al. proposed GMR model learning using EM algorithm in [RCC16]. However, dealing
with novel situations that are very far from the demonstration is problematic. Calinon
et al. extended GMR with a new approach called task parameterized movement learn-
ing in [Cal16] that enables generalization capability to different situations by considering
multiple coordinate systems.

Another model representation of GMR is a Hidden Markov Model (HMM) [CFS10] that
encodes movement primitives in the form of states. Similar to GMM, movements are
encoded with Gaussian distributions along with transition information. The states are
depended upon only one parent state and follow Markov chain rule. The variants of
HMM also emerged, such as incremental learning as proposed in [LO11], HMM with the
local encoding of state duration for partial movements using minimal intervention control
presented in [ZCC16] etc. Other variants of GMM and HMM are presented with detailed
study in [CL18].

Dynamic system methods such as Stable Estimator of Dynamical Systems (SEDS) and
Dynamic Movement Primitives (DMP) have gained considerable attention to represent



20 3. Related Work

movement primitives. SEDS proposed in [KB11] represents movements that encode the
entire attractor landscape in the state space of the data. Such representation is basi-
cally the time-invariant autonomous systems. The variants of SEDS proposed in [NS15]
and [PS16] addressed the issues underlying the computation of estimating asymptotically
stable dynamic system.

Dynamic Movement Primitive is trajectory-based movement representation proposed by
Ijspeert et al. in [INH13]. DMPs represent a linear attraction system that is based
on a spring-damper dynamic system. A monotonic time-dependent function termed as
forcing term modulates the movement representation. However, instead of time as an
input variable to represent trajectory, a phase variable was introduced that temporally
scale the movement. The forcing term is basically represented as a weighted sum of the
product of the phase variable with a basis function such as the Radial Basis Function
(RBF).

DMPs are used in multiple scenarios. However, here it is focused on the use of DMPs in
imitation learning as explained in [SPN05] [SPN03], where the weights of basic functions
are learned using regression methods such as LWR from the demonstrated data, ideally
with a single demonstration. A trajectory can be synthesized by changing the initial and
goal states that enable the adaption capability of DMP to novel situations. However, the
generalization capability is limited in the original formulation of DMP. An extension to
the DMP proposed by Kormushev et al. in [KCC11] uses a probabilistic framework GMR
for regression of forcing term in DMPs. Also, task parameterized DMP using GMM was
proposed in [PL18] that adopts multiple coordinates and provides better generalization
capabilities.

Although DMPs exhibit many useful properties like a generalization to novel situations
such as new initial and final positions, learning by just single demonstration and temporal
scaling through phase variable, additionally the sequencing of MPs and simultaneous
activation of multiple MPs are important aspects needs to be incorporated for better
generalization capability. However, as a part of this thesis, it is not intended to perform
simultaneous activation of MPs, but here, segmentation is performed on the trajectory
and MPs are sequenced one after other with continued motion. There are existing research
works on the sequencing of MPs to transition smoothly from one to another as proposed
in [Par17] are not considered here for simplicity. The focus is to learn contact-based skills
as a primary goal. Additional improvisation, such as the smooth transition of MPs and
GMR or task parameterized DMPs are considered as future work.

Though DMPs are appealing to learn position trajectories, now the question is how to
encode force trajectories and combines both position and force tracking? Which is a
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prime requirement of learning and reproducing contact-based skills. Kormushev et al. in
[KCC11] proposed a method for combined imitation learning of position and force quan-
tities in interactive tasks such as ironing, pressing, etc. GMMs are used to represent
the movements, and variations in movements are handled by the variance parameter of
GMM. At first positional profiles are learned from kinesthetic teaching and reproduced,
then force profiles are learned during positional reproduction using an external sensor.
The final reproduction of skill is performed with combined positional and force profiles
learned earlier in two different steps. This method has a drawback that learning the pro-
files is performed differently. It is intended to learn the profiles simultaneously and should
be combined based on skill requirements. Steinmetz et al. employed a similar procedure
in [SMK15]. Position DMPs are learned over the X, Y dimensions, and Force profile
using the same DMP model over the Z dimension. Conkey et al. also adopted DMPs for
learning both position and force profiles simultaneously using the same model in [CH18].
This thesis work employs a similar procedure to learn positional and force quantities si-
multaneously from the demonstration data. Activation of respective DMPs position/force
in each dimension is performed during reproduction based on specific skills.

3.3. Skill Learning

This section provides the study on different Skill learning methods employed in existing
research, focusing on contact-based tasks to understand the necessary features to learn
and reproduce the interactive tasks.

Lucia Pais et al. in [LKY13] proposed a framework for learning robot skills through
motion segmentation and constraints extraction. Wherein demonstrated trajectories are
segmented first and constraints such as reference frames, control variable, and motion
features are extracted in order to facilitate the learning process. Scores were evaluated
based on the variance in data within demonstration and between demonstrations. These
scores are evaluated for segmentation, choice of reference frame and control variable to
switch between position and force control. This method of segmentation and feature ex-
traction in [LKY13] provided efficient generalization for different tasks. However, multiple
demonstrations were required to extract such features. Reference frames were chosen but
not extracted from demo data and segmentation was done based on the variability of
data within and between multiple demonstrations. Another work from Lucia Pais et al.
in [UUN15] addressed the constraint extraction for demonstrations. According to Pais
et al., the task space constraints that are important to extract in order to learn and re-
produce are defined as 1)Reference Frame in which to express the task variables, 2) The
variable of interest at each time step like position or force, 3) A factor that modulates



22 3. Related Work

the contribution of force and position in the hybrid controller. A similar approach, as
explained earlier, was employed to identify task constraints.

Kober et al. in [KGS15] presented the way of learning movement primitives that depend
not only on kinematic quantities but also on force interactions. Similar to the method
employed in [LKY13], Kober et al. performed learning by segmentation, later computed
scores to choose the Reference frame and control variable. Segmentation was done based
on the Zero Velocity Crossing (ZVC) method after aligning trajectory using the Dynamic
Time Wrapping (DTW). Kober et al. proposed a different way to compute scores based
on the convergence behavior of the demonstration. This method also requires multiple
demonstrations to evaluate scores. Each segment of the trajectory is considered as move-
ment primitive and DMPs are considered for learning MPs. A simple hybrid position
force controller proposed in [CR79] was used to reproduce learned movement primitives.
Reference frames were defined as specific to the task but were not extracted from data.
However, reference frames were chosen out of defined frames using computed scores.

Steinmetz et al. in [SMK15] proposed a method for simultaneous teaching of Position and
Force for contact-based tasks. DMP was used to learn the trajectories as well as force
profile only in the Z direction. A hybrid impedance controller along with an impedance
controller was used for reproduction. Reference frames and control variables were not
considered as the task was performed on fixed frames and fixed control strategy, where
position control on X and Y dimensions and force control was fixed to Z direction by
defining finite stiffness in X, Y, and zero stiffness in the Z-axis.

The aforementioned methods were not extracting any Reference frames from data but
were chosen from the frames already defined. Conkey and Hermans in [CH18] extracted
dynamic frame, which is called as Constraint Frame (CF) by learning force profiles. Tra-
jectory segmentation is not done here. However, a selection matrix is defined to choose
a control strategy in constraint frames. The hybrid position-force controller is adapted
with dynamic constraint frames incorporated in it. Also, Conkey et al. contributed a new
methodology for extracting constraint frames and extended DMPs to facilitate contact
tasks where contact points can change dynamically.

Another work on learning force-relevant skills from the human demonstration is pre-
sented by Gao et al. in [GLX19]. A mathematical representation of Force-relevant skills
is proposed as a function of position, velocity, interaction forces, and task constraints.
Skill acquisition was meant to find the internal relations of these variables from multiple
demonstrated data. The encoding of demonstrated data was done using GMM and GMR
is used for the prediction. Task execution was performed on an Adaptive hybrid force
position controller based on admittance control.
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Manschitz et al. provided a method for Learning sequential skills under force interactions
in [MGK20]. A dynamical system with a linear attractor was chosen as MP and a hybrid
position force controller similar to Kober work in [KGS15] was used. A novel task seg-
mentation method was proposed called DND. At first, the trajectory is segmented into
multiple segments using Zero velocity crossing, but segments are grouped again using the
DND algorithm to form movement primitives. Sequential skills were constructed from
segments from DND and switching between skills was performed by MP sequence learn-
ing. Experiments were done on tasks like box flipping, box stacking and unscrewing the
bulb. The algorithm proposed in the paper chooses the reference frame and the control in
each MP. However, S.Manschitz et al. focused on the segmentation of the demonstrated
task to obtain MPs and sequencing the MPs to achieve learning an arbitrary skill. This
thesis work aims to develop a framework to learns the skills which are predefined and
in contrast to a methodology employed in [MGK20] is to learn any arbitrary skill, it is
planned to employ a similar procedure to learn a skill but in a way that parameters in
each step of the procedure is more engineered specific to the predefined skill.

3.4. Hybrid Position-Force controllers

The main goal of the project is to learn force-based or contact-based skills. A controller
like impedance control is not sufficient to implement learning for compliant tasks. A
simple hybrid position-force controller that offers a selection of position and force control
in each dimension, initially proposed by Craig et al. in [CR79] is one of the suitable
methodologies that can be employed for contact-based tasks. As proposed in [LKY13]
[UUN15] force controller is embedded along with the position controller to achieve learning
in contact-based LfD context.

A similar control strategy was employed in [KGS15] [MGK20] based on task level inverse
dynamics approach initially proposed in [LGM12] with a hybrid control strategy. Stein-
metz et al. in [SMK15] also adopted a similar control strategy to teach and reproduce
in-contact tasks. Here, a hybrid controller with impedance controller as position control
and PI controller for force control was adopted. Steinmetz et al. extended the hybrid
control strategy with an additional velocity controller to track the contact point. How-
ever, controller switching was fixed to Z-axis. In contrast, the requirements are to have
more degree of freedom to choose the controller switching in other dimensions also.

Gao et al. in [GLX19] also adopted a similar control strategy, an Adaptive Hybrid Force
position control, to learn force-relevant skills from human demonstrations. Gao et al.
extend the simple PI Force controller with additional admittance control that generates
a velocity command.
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Hybrid control strategies aforementioned under LfD and contact-based tasks are suitable
when tracking interaction forces in simple Cartesian coordinates. However, these strate-
gies are not sufficient when a task frame undergoes a transformation. Conkey et al. in
[CH18] addressed a similar issue based on [Kha87], wherein dynamically changing con-
straint frame was embedded in control equation to transform Selection matrix defined
intuitively in constraint frame.

Marin et al. in [MW16] proposed a unified hybrid position force controller based on
the Kinesthetic filtering method proposed in [LD88] and extended the approach for non-
invariance filtering in [ABM90]. In [MW16], addressed that when a compliant frame
undergoes a rigid transformation, the commands issued in the compliant frame need to
be transformed, in other words, kinesthetically filtered.

The aim is to develop a generic hybrid controller that can be used for most of the skills.
To do so, some of the prime requirements are defining control parameters like stiffness
parameters and selection matrix in the compliant frame and such rigid transformations
of the compliant frame should be considered in the control loop. It is required to adopt
a control strategy similar to the strategy employed in [CH18] [MW16] that allows the
transformation of compliant frames. However, in [CH18], only rotational transformations
were considered. The goal is to adapt the rigid transformations, including translations.
In contrast to [CH18], It is intended to use an impedance controller for position control
and a PI controller for force control in this thesis work.

Marin et al. in [MW16] adopted the rigid transformation and an Impedance controller
was employed. However, In contrast to the requirement to define the stiffness matrix in
CF, Marin et al. have not considered the transformation of the stiffness matrix as it was
fixed to the base frame. In the subsequent chapters, a strategy for a Hybrid position-force
controller capable of rigid transformation and the transformation of control parameters
is derived.
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3.5. Summary

In summary, to learn and reproduce contact-based skills, it is considered predefined skills
that are more common in industries that involve interactive tasks. This thesis employs
an LfD methodology that is similar to the methods surveyed in assembly tasks [ZH18].
Since DMPs exhibit many useful properties like generalization, learning by single demon-
stration, and temporal scaling, as well as proven methods to use DMP for learning force
profiles. DMP as movement primitives is considered and performs learning of position,
orientation, and force profiles simultaneously. The adaption and implementation proce-
dures are explained in detail in Chapter 4. Later, from the analysis of Skill Learning
methods presented earlier in this chapter, features are identified that represent skills and
extract for each predefined skill. From the viewpoint of controller implementation meth-
ods discussed earlier in this chapter. A hybrid position force controller and further extend
to the control strategy that is capable of adapting a rigid transformation of compliant
frames.





4. Approach

In order to develop a skill-based learning framework for LfD, the methodology consid-
ered for this thesis is based on a segmentation and encoding process. The skill which is
demonstrated can comprise of multiple MPs and therefore can be represented by sequenc-
ing them. Here, the main idea of learning a skill is by performing trajectory segmentation
and encode each segment to a movement primitive specific to the skill. Each segment can
be represented as one MP. Different types of MPs are already discussed in section2.2. As
shown in [CL18], DMP, GMR with GMM and HMM, etc., are some of the MP represen-
tations that are more suitable for contact-based tasks. To extract these MPs, trajectory
segmentation is a significant step. In this chapter, the segmentation methods employed
to segment demo trajectories into a meaningful set of MPs are addressed. Detailed frame-
work and comparison of different segmentation methods are provided in [LKK16].

After performing segmentation and extracting points for the encoding of MPs, compliance
frames are needed to be extracted in order to apply forces intuitively to interact with the
environment. By fitting geometrical constraints specific to skills, compliant frames can be
extracted based on local coordinates of the constraint for each segment in each predefined
skill. Analysis and implementation for the best fit of constraints specific to the skill will
be addressed in this chapter.

Suitable parameters and features specific to each skill are identified and extracted for
reproduction, which should be robust to noise and environment dynamics. Parameters
like Normal forces and Stiffness parameters for impedance control are computed at this
step. As a part of this thesis, the identification and extraction of such parameters are
performed.

A control strategy will be derived for a hybrid controller to track and control position
and force quantities. The controller employed is capable of reproducing interactive skills
considering compliant frames, parameters, and features specific to each skill.

The approach to develop a skill-based learning framework for contact-based tasks is em-
ployed in two phases :

1. Skill Independent Approach: Employ generic methods of learning without consider-
ing skill-specific requirements.

2. Skill-based parameterization: Establish approaches that are specifically framed for
skills. Also, identify and extract skill-specific parameters for the modules imple-
mented in Phase I.
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4.1. Phase I: Skill Independent Approach

At the initial phase, a theoretical analysis is performed and implementation of the required
modules is provided, which are independent of skills. The workflow overview of Phase I
is shown in Fig.4.1

Trajectory 
Segmentation

• Cluster Based and
changepoint method
Segmentation

• Hierarchal
Clustering
Algorithm

• Time Series Change
point detection

• Segmentation based
on both position and
force data.

Constraint 
Extraction

• Extract Geometrical
constraints on
trajectories.

• Infer geometrical
constraints based on
both twist and
wrench data.

• Constraints
extraction like:

1. Point on plane
2. Prismatic
3. Cylindrical
4. Point on line etc

DMP 
Extraction

• Dynamic movement
primitives as MP.

• Learn Position
trajectories X, Y and
Z independently.

• Learn orientations
by learning
quaternions
together.

• Learn force profiles
Fx, Fy and FZ
independently.

Controller 
Implementation

• Implementation of
Cartesian impedance
controller for
position and
orientation control.

• Implementation of
PID force controller
for force.

• Implementation of
switching sequence
between two
controllers

Phase I

Skill Independent Approach
Theoretical analysis and Implementation of 

required Individual Modules

Figure 4.1.: Phase I

4.1.1. Trajectory Segmentation

Trajectory segmentation is an important step to learn a set of movement primitives of a
complex task. Often a single MP is considered for learning an entire trajectory. However,
by sequencing or blending a set of MPs, the complex tasks can be learned with more
accuracy. The segmentation procedure in order to obtain MPs is often called Motion
Segmentation and is explained in detail along with its significance in imitation learning
in [LKK16]. Lin et al. in [LKK16] also addressed different online and offline motion
segmentation methods and algorithms and framed novel methods considering factors to
be incorporated for motion segmentation. However, the methods explained in [LKK16]
are not limited to the LfD context.

Existing research on trajectory segmentation proposed in the LfD context includes dif-
ferent types of segmentation methods 1) Classification using prior data by Manual Seg-
mentation 2) Zero Velocity Crossing(ZVC) approach 3) Clustering using unsupervised
learning, and 4) Change Point Detection based segmentation.



4.1. Phase I: Skill Independent Approach 29

Manual segmentation requires expert knowledge to segment the trajectories meaning-
fully. There are multiple methods proposed in manual segmentation by sensors attached
to the robot, using visualization tools. Multiple machine learning algorithms are also pro-
posed for segmentation by using prior labels performed by manual segmentation [LKK16].
However, for a huge amount of data and every new skill, this process of labeling using
manual segmentation to train machine learning models is cumbersome. This approach is
not used in this thesis to facilitate user-friendly robot teaching.

Zero Velocity Crossing (ZVC) approach for segmentation as used in [KGS15] [MGK16]
[MGK20] is a commonly used procedure as it is easy to implement and is a more robust way
of segmentation. The zero-velocity crossings are identified from the demonstrated data.
Segmentation points are considered where velocity crosses zero. Recent advances using
the ZVC approach like in [MGK20] using DND to assign segments to MPs outperforms
other approaches. However, while teaching a robot, the user needs to consider when to
stop the robot to differentiate between motion segments. This demonstration method
requires expert knowledge about the task or skill that is being demonstrated.

Cluster-based Segmentation methods are considered to be an automatic way of seg-
mentation. Here, unsupervised learning methods to segment trajectory points by grouping
similar points [KTN08] is used. For force-based tasks, considering force to influence the
segmentation can be facilitated in clustering methods. In [XLE18], Xie et al. proposed
segmentation by spatial and temporal way of hierarchical clustering considering both po-
sition and force data from the demonstration. This method is well suited for this thesis
goals, which facilitates a user-friendly approach. The user need not consider additional
parameters during the demonstration. However, careful skill-specific parameterization
and tuning are necessary before developing a skill library.

Change Point Based Segmentation approach in general deals with segmenting uni-
variate and multivariate time series data [LT06]. As the demonstrated trajectory data
can be considered as a multivariate time series, change point detection is used to address
the motion segmentation to obtain MPs [NOA] [NOA15]. In the LfD context, Niekum et
al. in [NOA15] addressed online change point detection based segmentation method for
demonstration data using Bayesian Information Criteria for maximum likelihood approx-
imation.

In reference with [LKK16], comparing different methods and considering the factors for
contact-based skill learning such as automatic segmentation, robust segmentation of pat-
terns, and meaningful representation of motion, Cluster-based and Change point based
segmentation methods are considered here as more suitable methods for learning compli-
ant skills.
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Figure 4.2.: Unsupervised Hierarchical Clustering based segmentation

Implementation of Cluster Based Segmentation

Clustering is a grouping mechanism of similar data, which is an interesting feature to
group multiple patterns. As explained in [XLE18], Agglomerative Hierarchical clustering
is one such unsupervised clustering algorithm that is capable of grouping similar features
in demonstration data without defining a required number of clusters beforehand. Auto-
matic grouping is done based on predefined metrics called linkage such as ward, single,
complete, and average metrics. Each group obtained from demo data can potentially be
represented as an MP. However, it is not straightforward to represent each group as one
movement primitive because it is important to understand that grouping trajectory data
is not the same as segmenting trajectory. It is because non-neighbor samples are also
grouped, where segmentation of trajectory is intended to group similar patterns among
neighboring samples of data. Hierarchical clustering usually groups similar data only in
the spatial domain, which results in grouping non-neighbor samples. Therefore, segment-
ing trajectory data, which is a time series data, should consider temporal constraints to
group only neighboring data into segments.

The issue of handling spatial and temporal clustering is addressed in [ZMT13] [XSX16]
[XLE18] for segmenting trajectory data in the robotics domain. A similar methodology is
adopted in this thesis to segment demo data using Agglomerative hierarchical clustering in
the spatial domain but for temporal constraint, in contrast with methods used in [ZMT13]
[XSX16] [XLE18], here two different methodologies are considered for simplicity. They
are 1) Time Vector as an additional feature, and 2) KNN Neighbors as a prior, as shown
in Fig.4.2.

Time Vector as a temporal constraint is a simpler way to deal with the segmentation
of trajectories. In this approach, an additional time vector, a column with an increasing
sample index number of rows, is added to the demo data with position and force quantities.
The modified data is now passed to the Agglomerative clustering algorithm as shown in
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Alg.1. The output of the algorithm is a set of trajectory segments considering both
position and force data which can be represented as a Movement Primitive.

KNN Neighbour as a prior for connectivity constraint which defines the neighbouring
samples. The KNN neighbors as a connectivity matrix are passed along with the data to
the Agglomerative clustering algorithm and therefore, only neighboring samples of data
are grouped together. The output of the algorithm gives a set of segments of demonstrated
trajectory data.

Figures 4.3a 4.3b 4.3c shows the comparison of clustering of trajectory data with and
without time constraints. This figure gives a detailed understanding of the requirements
of temporal constraint in trajectory segmentation as also addressed in [ZMT13] [XSX16]
[XLE18].

Implementation of Change Point Based Segmentation

Niekum et al. in [NOA15] introduced an algorithm for online change point detection
also convincingly applied on LfD data for robots. The algorithm performs Bayesian
Online Changepoint detection by estimating the maximum likelihood parameters for each
segment. The algorithm shown in Algorithm:2 from [NOA15] called CHAMP (Change
Point Approximate Model Parameters) is directly adapted in this thesis without further
modifications. The paper [NOA15] also demonstrated experimentally to infer motion
information from demonstration trajectory data under LfD context. Figure 4.3d shows
the results of change point detection based segmentation of demo trajectory.

A suitable method for segmentation is chosen based upon the task requirements, the
complexity of trajectories and skills. For instance, for a sliding skill, cluster based seg-
mentation is more suitable to segment trajectories based on position and force data. On
the other hand, in a press skill that exhibits more discontinuity in the data based on
forces, the change point method is suitable for segmentation. The choice of segmentation
method may also vary within the skill-based upon multiple parameters such as demon-
stration method, environment, etc.
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(a) Hierarchical Cluster based segmentation without Time Constraint

(b) Hierarchical Cluster based segmentation With KNN Constraint

(c) Hierarchical Cluster based segmentation with Time Vector

(d) Change Point based Segmentation

Figure 4.3.: Comparison of different segmentation methods
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4.1.2. Constraint Extraction

Contact-based skills, also known as compliant skills, are skills that have controlled motion
and maintain the contact forces. To learn such complex skills, demonstrated tasks are
represented in feature-based representation and specific constraints need to be extracted
depending on tasks. As stated earlier, learning a compliant skill is learning the movements
along with the force applications. As such, constraints such as constraint frames needs to
be extracted in which forces can be applied intuitively during reproduction.

Researchers have done extensive work in extracting constraint frames where force applica-
tion is involved. Such constraint frames are also called compliant frames(CF). Ureche et
al. in [UUN15] extracted force information, reference frames and constraints from demon-
strated data to learn compliant skills. However, the constraint extraction is limited to the
reference frame, task variable, and stiffness modulation. The reference frames are chosen
from the predefined frames. A similar approach is employed in extracting constraints
framed in [LKY13] which are defined manually with prior knowledge for every task. The
aim is to automatically extract such reference frames for predefined skills without prior
knowledge of the user.

The extraction of the frame needs to be pre-programmed for specific Skills beforehand
while developing skill templates. Conkey et al. in [CH18] extracted such constraint frames
dynamically by learning the contact force trajectories obtained during the demonstration.
Although the constraint frames are extracted dynamically by learning force profiles, the
reference frames extraction is way too generic to implement different skills. For example,
this method of dynamic extraction can be applied to contouring skill, but sliding skill
doesn’t require dynamic extraction of constraint frames. In sliding skill, constraint frame
can be fixed to a plane geometry on which sliding is being performed. The constraint
extraction methods should vary with respect to every skill and should be designed and
pre-programmed beforehand while constructing abilities. As stated in the goals, the end-
user without any prior knowledge shouldn’t be given a choice to choose or construct
frames, which has to be done beforehand during skill construction.

It is required to have a more specific way to extract constraints to define compliant
frames for learning force applications. Such a specific way of constraint extraction is
identified in [SZG18]. Guru et.al in [SZG18] presented an approach for inferring geometric
constraints in human demonstrations to represent kinematic constraints of motions. The
proposed approach first fits constraint models based on only kinematic quantities and
evaluates them individually using position, force, and moment criteria. The work is
limited to only extracting such constraints on human demonstration but not implemented
in learning scenarios. In this thesis, the constraint extraction based on methods proposed



34 4. Approach

in [SZG18] is adapted directly and extended to learn the constraints for predefined skills
and subsequently used for learning compliant frames. From the paper, the important
geometrical constraints identified from human demonstrations are as follows:

Fixed Point Constraint: which represents a single point that is constrained to an
environment. For example, a ball joint can be considered as a point constraint where
there are no linear motions but only orientations.

Point on Plane Constraint: is a constraint of a motion to a plane without only two
linear motions on a plane are considered and other DOF of motion are ignored.

Concentric cylinder constraint: is motion constraint about an axis, where transna-
tional motion is permitted along an axis and orientation is allowed about the axis. For
example, peg in hole insertion task. For learning skills for peg-in-hole insertion, this
geometrical constraint can be suitable to learn compliant frames.

Planar Constraint: similar to Point on plane constraint but allows the orientation on
the plane along with motion on a plane. For example, a sliding skill performed by the
robot should apply a constant force on a plane surface. Planar Constraint is suitable to
extract a compliant frame to perform a sliding task.

Prismatic Constraint: is the representation of only transnational motion without ro-
tational movement. For instance, tasks like pulling a drawer.

Axial rotation Constraint: restricts all translational motion but permits only one
rotation about any point. Extracting this constraint extracts the hinge axis about which
the rotational motion is performed.

Figure 4.4.: Illustration of different constraints, Source:[SZG18]

Extraction Procedure of Compliant frame for skills

Constraints are identified for specific skills based on the force application. The constraint
frames specific to contact-based tasks are explained in detail for specific tasks in [BD96]
as "Task Frame Formalism" or "Compliance Frame formalism." [BD96] gives us basic
theoretical understanding and acts as a basis for defining CF for specific tasks. Further
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analysis and identification of constraints for specific skills are explained in detail in the
next chapter under feature identification and extraction.

Identified constraints for skill are extracted from the demo data of a skill. For instance,
planar constraints extracted for slide skill using methods provided in [SZG18] are used to
extract compliance frames as shown in the figure 4.5.

Figure 4.5.: Illustration of Point on Plane constraints extracted for Slide skill

4.1.3. Dynamic Movement Primitives Extraction

As explained in section 2.2, Movement Primitives encode motion in a mathematical model,
which forms a basic building block, when arranged in sets of sequences, represent a com-
plex motion task. Movement primitives in the context of learning skills are extensively
used in recent years for learning tasks or skills. For further references, a detailed literature
review of Movement primitives is explained in Chapter:3. Dynamical Movement Primitive
(DMP) in [INH13] [SPN05] [SPN03] is one of the well known movement primitives in LfD
context and is considered in thesis.

DMPs are modeled based on nonlinear dynamic attractor systems, where motor skills are
learned from demonstrated data to model MP and can be utilized to reproduce learned
motion. DMPs can approximate the trajectories with changes in initial and goal states
during reproduction. However, the accuracy of approximation highly depends upon the
method used to learn the function approximator and complexity of the trajectory. Ad-
vantages and implementation of Learning DMPs for imitation learning are very well por-
trayed in [SPN05]. In contact-based applications, DMPs are used in multiple scenarios for
learning movement primitives. For example, Steinmetz et al. in [SMK15] utilized DMP
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for learning position, orientation, and force profiles for in-contact tasks. Conkey et al.
in [CH18] also used DMP for learning the position, force, and also dynamic constraint
frames.

DMP Model:

The DMP model comprises of three basic elements: 1)Transformation system 2)Function
Approximator and 3)Canonical System, [INH13] [SPN05] [SPN03] [SMK15]. For this
thesis, the following formulation is adapted similar to [CH18].

1) Transformation System represents the first order critically damped dynamical model
as a spring-damper system shown below:

τ v̇ = α(g − x)− βv − α (g − x0) s+ αf(s) (4.1)

τ ẋ = v (4.2)

System is set to critically damped with appropriate choice of α and β usually, β = α/4.
x is a state variable which is being traced with initial value x0 and goal value g.

2) Function Approximator: is a non linear function which is learned from the data to
approximate the trajectory as a set of normalized linear combinations of basis functions
which is shown below:

f(s) =
∑

i wiΨi(s)∑
i Ψi(s) s (4.3)

Ψi(s) = exp
(
−hi (s− ci)2

)
(4.4)

f(s) a function approximator with linearly weighted weights wi onbasis function Ψi(s).
The main objective of learning DMP is nothing but learning wi. In this work these weights
are learned using Linear Weighted Regression (LWR). Other approximator methods like
GMR are also possible as used in [Cal16][PL18]. Basic radial basis function is chosen for
Ψi(s) which can approximate trajectory segments in most of the cases. For complex tra-
jectories, segmentation methods as explained in previous section reduces the complexity
to learn the DMP.

3) Canonical System: ensures the synchronization of state space variables as the DMP
isolates each dimension of the state variable. Synchronization is carried out by replacing
time variable with canonical variable. The equation of the canonical system is represented
as follows:

τ ṡ = −αss (4.5)
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Cartesian DMP model for Orientations: The above DMP system with LWR ap-
proximator is well placed with Cartesian coordinates as each cartesian coordinate can be
represented as one state variable and can be isolated or decoupled using phase variable
in canonical system without any further modifications. However, a special treatment is
required for handling orientation quantities when representing in unit quaternions. Be-
cause, a quaternion is a vector of four quantities which represents orientation in 3D space,
but each quantity cannot be decoupled like Cartesian coordinates. In order to handle this
issue, a generic form of DMP is introduced called CDMP especially to deal with orienta-
tion and torque quantities in [UNP14] [KGN17]. This form of DMP is also used in [CH18]
for learning orientations of trajectory. The CDMP for orientations can be represented as
follows:

τ ω̇ = αωδ (q,qd)− βωω − αωδ (q0,qd) s+ αωf(s) (4.6)

τ q̇ = 1
2ω ∗ q (4.7)

In the above representation, equation of transformation system in equation 4.6 is simillar
to equation 4.1 represented in DMP. But without phase variable. All the quantities are
learned together without isolation. δ (q,qd) is a quaternion error or quaternion difference
function defined as δ (q1, q2) = 2 log (q2 ∗ q̄1) [CH18] [UNP14].

The adaptive capability of DMP for change in initial and goal points by approximating
the trajectory is well suited for noncontact-based skill learning. Nevertheless, in order to
learn contact-based skills, additional modifications are required to adapt dynamics in the
environment for interaction tasks. The feedback from the robot is considered to track the
contact state at each time step parallel to the task execution. The initial and goal points
are adapted based on the contact state.

Implementation of DMP Extraction:

In Cartesian spaces, the DMP model isolates each dimension of the states space. For
example, in a specific skill X, Y, Z, Fx, Fy, Fz are position and force profiles respectively
needed to learn, such that as a sum, six different DMPs for each variable will be modeled
and the synchronization is carried out using canonical phase variable. On the other
hand, for learning orientation quantities, a combined DMP system is learned and LWR
is used as a regressor to learn function approximator. The overview of the DMP module
implementation for the thesis work is shown in Fig.4.6

Position and force profiles required for skills are learned using normal DMP and orienta-
tions are learned using Quaternion DMP. For skills, where contact requirements such as
dynamical initial and goals are needed, dynamically adapted the states with contact state
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Figure 4.6.: DMP Extraction for Position, Orientation and Force Quantities

(a) DMP extraction of Position of a trajectory with three segments

(b) DMP extraction of Orientation of a trajectory with three segments

Figure 4.7.: Example for DMP Extraction for Position and Orientation
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feedback from the robot. As far as skills predefined until now, there is no requirement
of learning torques. Figure 4.7 shows an example for DMP extraction for position and
orientation of a sample trajectory with three segments.

4.1.4. Hybrid Position-Force Controller

In order to learn and reproduce contact-based skills, tracking kinematic quantities are not
enough but also interaction forces and moments need to be tracked and controlled. For
controlling a robot, multiple control paradigms have emerged in order to track position,
velocity, and joint torques. Robust robot controllers like Impedance controller, Inverse
dynamic controller are able to control robots by tracking Joint torques of the robot.
However, such controllers are not able to handle interaction forces with the environment
and hence not suitable for performing compliant tasks. A detailed study on comparison
of different contact-based and contact-free controllers is explained in [XHL19] which gives
a detailed understanding of compliant control strategies such as High-Level Compliant
control and low-level robot motor control in the LfD context. In order to control both
position and interaction forces, a high-level hybrid position-force controller similar to the
controller implemented in [CH18] [KGS15] [MGK20] needs to be employed. In order to
implement such a hybrid controller, for tracking position and orientation, an Impedance
controller is chosen and for tracking force and torques, a simple PI Force controller is
chosen.

Impedance Controller:

Impedance controller is first proposed by Hogan et.al in [Hog84] which is modeled based
on non-linear virtual spring damper system which regulates the acceleration, velocity, po-
sition, and forces, as a result it regulates the mechanical behavior of a robot. In impedance
control main objective is to achieve the desired impedance of the robot movement. The
control law can be written as follows:

τic = JT (q)
(
Kc(ep) +DxJ(q)θ̇ + g(q)

)
(4.8)

ep = xd − xmsr ;x =
[
position

orientation

]
6x1

(4.9)

Here τic denotes Joint torques as commands to robot from Impedance Controller, J(q)
denotes Jacobian of the robot,Kc denotes stiffness, ep is the error of desired and measured
vector of position in Cartesian coordinates and orientation in Euler angles as xd and xmsr
respectively. Dx and g(q) denotes Damping and gravity compensation terms of nonlinear
dynamical system. The basic control loop of the Impedance Controller can be depicted
as shown in the figure 4.8
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Figure 4.8.: Impedance Controller

In the control loop shown in Fig.4.8, the minimal version of the Impedance controller is
depicted with position and orientations in cartesian coordinates and Euler angles, respec-
tively. Handling Euler angles is problematic and highly unstable to regulate the forces
and moments in stiffness module Kc(ep). Now the question of representing orientations
of the end effector is a challenging problem that needs to be addressed in order to design
a robust controller. Caccavale et al. in [CNS99] presented a detailed comparison of dif-
ferent representations for orientations such as Euler angles, Rotation matrix, Axis angle
representation, etc. The paper [CNS99] explains evidently that the instability is caused
due to Euler angle representation.

Also, another important extension of the Impedance controller called Spatial Impedance
controller proposed in [FB97] which is based on spatial stiffness, solved the issue of ro-
bust representation of orientations. Stramigioli and Duindam made further extensions
in [DSD01] to obtain force and moments of stiffness module by modeling it as Vari-
able Spatial Springs. In a simple impedance controller, forces and torques together are
called wrenches, are obtained by simple multiplication of Stiffness matrix Kc with the
error of pos vectors x. In contrast to simple impedance controller, in [DSD01], forces
and moments are obtained with complex mathematical calculations by modeling variable
spatial springs for the stiffness module. This method is proven to be one of the stable
configurations that can be included in the impedance controller. The Variable Spatial
Spring-based Impedance controller, which is already developed, is adopted directly in this
thesis for tracking of position and orientations of the robot end-effector. The overview of
the Variable spatial Spring-based Impedance controller is shown in the figure 4.9. The
implementation of the controller is done entirely in the MATLAB Simulink package, and
the interface of the package with other modules is explained in detail in section 5.1.
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Figure 4.9.: Overview of Variable Spatial Stiffness Impedance Controller

Force Controller:

As stated earlier, in order to reproduce contact based skills, compliant tasks are executed
to interact with environment. Hence, along with impedance controller a force controller is
needed to perform compliant tasks. A simple PI control law as written below is adapted
for regulating of interaction forces with environment.

τfc = JT (q)
(
Kpef +Ki

∫
efdt

)
(4.10)

ef = fd − fmsr ;f =
[
force

torque

]
1x6

(4.11)

Here τfc denotes Joint torques as command to robot from Force controller, ef denotes
error of desired and measured vectors of forces and torques. Kp andKi are proportional
and integral constants of PI controller respectively. The overview of control law is shown
in Fig.4.10.

However, above mentioned control strategy for force control is a direct control method
which exhibits highly unstable behaviour while interacting with environment. It is hard
to tune the parameters to maintain stable contact and apply stable contact forces on to
the environment. Also, with change in environment, even with well tuned parameters,
controller exhibits unstable and oscillating behaviour. Similar issues is address and com-
pared with different force control algorithms by Wilfinger in [WL18]. Wilfinger extended
PID controller for force control with Integral Error scaling and Force signal clipping to
limit the windup of integrator. These modification exhibited significant improvement to
maintain a stable contact and apply stable forces without oscillations on to the environ-
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Figure 4.10.: Force Controller

ment. Extending the above equation 4.10 with signal clipping following is obtained as a
new control law:

τfc = JT (q)
(
Kpef +Kisat(

∫
efedt)

)
(4.12)

ef = fd − fmsr ;f =
[
force

torque

]
1x6

(4.13)

Hybrid Controller Implementation:

The aforementioned two controllers are illustrated as implemented independently of each
other. However, the torque command from both the controllers cannot be applied si-
multaneously on all dimensions. A selection mechanism for controller switching between
position control and force control should be included in the hybrid position-force controller
as a combined scheme to achieve compliant tasks. A simple classical hybrid control strat-
egy proposed in [CR79] is shown in Fig.4.11. Control law for the Hybrid Controller shown
in the figure 4.11 is written as follows:

τ = τic + τfc (4.14)

τ = JT (q)(Kc(S)(ep) +DxJ(q)θ̇ + g(q))

+JT (q)(Kp(S̃)(ef) +Ki(S̃)
∫
efdt)

(4.15)

Here τ is Total Joint Torque, τic is from Impedance Controller, from equation 4.8. τfc is
from force controller, from equation 4.10. variable S and S̃ denotes the diagonal selection
matrix and its complement. The selection matrix enables the selection of position control
or force control in each dimension. This hybrid control scheme acts as a basis for control
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Figure 4.11.: Classical Hybrid Position-Force Controller

for compliant tasks in this thesis. Yet, the controller needs to be adapted for the skills
and further modifications will be done based on skill parameterization in section 4.2.3.
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4.2. Phase II: Skill Based Parameterization

In this phase, skill-specific parameters are identified for each skill in each module imple-
mented in Phase-I. Each predefined skill needs to be parameterized and the parameters
required in each module implemented in Phase I need to be identified. In this phase,
demonstrated data is analyzed to identify and extract the skill-based features along with
the identification and extraction of features specific to skills and adapted hybrid controller
for skills. The overall workflow of Phase II is depicted in the figure 4.12.
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reproduction

• Identified Features
are:

1. Segmentation
2. Compliant frames
3. Switching
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specific parameters

Figure 4.12.: Phase II

4.2.1. Feature Identification

Feature Identification is one of the major contributions of this thesis. Identifying features
is a challenging task because features need to be identified only those that are relevant to
represent each skill and reproduce the skill by learning. The main objective of the thesis
is to develop a framework for the learning of contact-based skills. Therefore, features
that are identified play a key role in learning a skill and reproduce it. Features are iden-
tified by analyzing the existing research under skill-based Learning from Demonstration
context. By analyzing the related research works provided in section 3.3, it is notice-
able that most common procedures to learn and reproduce the skills are similar to the
approaches provided in Phase-I, such as segmentation, constraint extraction, DMP, and
Hybrid controller. However, approaches employed to learn and reproduce the skill vary
greatly based on their type of task and skill in their respective research. There is a need
to identify such parameters that vary among the skills. Here, such important features
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that vary among skills are presented as Trajectory Segments, Compliant Frames, Switch-
ing Sequence or Selection Matrix, and Trajectory Learning. These features should be
extracted from demonstration data to learn and reproduce a skill. A detailed explanation
for each feature and the reason identifying them as relevant features is as follow:

1)Trajectory Segments: Learning a trajectory can be done by learning DMPs of po-
sition, orientation and force profiles. However, complex trajectories are difficult for ap-
proximation and hard to represent within one Movement Primitive as explained in 4.1.1.
Segmentation needs to be performed before learning trajectories. Segmentation is one of
the most common steps observed in many research works prior to MP learning. However,
the segmentation procedure varies based on the task considered. In contrast to the other
research works presented in section 3.3, the aim is to identify what type of segmentation
should be employed for each skill. Hence, segmentation is considered as one of the features
of the skill.

2)Compliant Frames: Compliant frames are local coordinate systems where contact
forces can be intuitively applied and are different for different skills, which are also called
constraint frames as mentioned above. The force application cannot be generalized for all
skills. For instance, for a sliding skill, the constant normal force needs to be applied on
to the environment, whereas for contouring skill, the varying force needs to be applied.
Every skill has a unique way to deal with force application and such compliant frames
vary for every skill. Identifying the best possible way to deal with force in each skill is
essential to learn and reproduce it effectively. Hence, Compliant frames are considered as
one of the important features to be extracted for each skill, respectively.

3)Selection Matrix: Selection matrix is a diagonal matrix and a control parameter of
hybrid controller that defines the control strategy between position and force control in
each direction in the compliant frame. Each skill has a unique way to deal with force
application and therefore Selection matrix that defines the control strategy is also unique
to each skill. However, defining a selection matrix depends on the extracted compliant
frames. In the subsequent section, defining a selection matrix for each skill based on the
requirements of interaction forces and compliant frames is illustrated.

4) Desired Trajectories: Desired Position, orientation, and Force profiles by learning
DMP or extracting from data. Desired Contact forces that should be applied on the
environment vary from skill to skill. Desired forces are extracted from the demonstrated
data for every task. However, the extraction procedure varies between skills which is based
on the requirements of force interaction. An intuitive way of force application is defined
on compliant frames. Varying Force profiles required for certain skills like contouring can
also be learned using DMPs similar to position and orientation trajectories.
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4.2.2. Feature Extraction

Skill-based features identified in the previous section need to be extracted for every spe-
cific skill which is predefined. Feature extraction procedures vary among the skills and
careful methods need to be employed for extraction. Feature extraction is also a major
contribution of this thesis to achieve the objective for the learning of contact-based skills.
This section covers the extraction of identified features for each skill. As a part of this
thesis, four basic skills such as 1)Slide, 2)Contour 3)Touch, and 4)Press are chosen as
examples and further analysis and experiments are carried out on these chosen skills.
Skill definition and extraction of each feature of skill are explained subsequently for each
example defined as follows:

Skill 1: Slide

Sliding skill is defined as a skill to perform sliding operation on an arbitrary plane in 3D
space. A constant force should be applied normal to the plane throughout the trajectory.
In order to learn and reproduce sliding skill, the robot should learn the trajectories of
motion and contact normal force and its application on the environment as shown in
Fig.4.13, which can be achieved by learning the identified features.
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Figure 4.13.: Illustration of Skill 1: Slide
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1)Segmentation: For the Sliding skill, Unsupervised cluster-based segmentation is em-
ployed to segment trajectories into multiple movement primitives by considering both
position and force data of demo trajectory. Unsupervised cluster-based segmentation is
considered here because the trajectory needs to be subdivided into segments that pos-
sess different motion parameters. For example, Compliant plane fitting cannot be fit
on the entire trajectory as the application of force may vary at different parts of the
long trajectory. This motion behavior can be easily grouped into smaller segments using
cluster-based segmentation.

2)Compliant Frames: Considering Sliding skill, a constant normal force needs to be ap-
plied on a plane of a trajectory. Hence, a compliant frame can be defined on the plane,
and such forces can be applied only on the Z-axis of the compliant frame. In order to
define such a compliant frame, a plane needs to be fit on the segment. Here, the con-
straint extraction module, which is explained in the previous section, is used to fit planar
constraint to extract plane.

3)Selection Matrix: In order to reproduce demonstrated sliding skill, the selection matrix
here is fixed with respect to the compliant frame as it is required to apply a constant force
normal to the plane and the compliant frame is defined on a plane. Now with respect
to the CF, force is applied only in Z direction throughout the segment. Hence, position
control is selected in X and Y direction, and force control is selected in the Z direction.
It should be remembered that the selection matrix defined here is with respect to CF.
This gives us a basic understanding that how important to define CF to have an intuitive
understanding of force application.

4)Desired Position: Desired positions for slide skills are learned from DMP module.
Change in initial and goal points can be adapted easily for the segments.

5) Desired Orientation: Orientations for slide skills are similar to position quantities.
Thus, orientation is learned as quaternions using the Quaternion DMP module.

6) Desired Forces: from the skill definition for slide skill, a constant force is required to
be applied in the direction of the plane normal or in the direction of the Z-axis to the
CF. Therefore, the desired force is constant throughout for each segment and needs to be
extracted from the demonstrated data. A simple average of demo forces in the Z direction
after transformation into CF from BF is not a viable solution for extracting constant
forces. Since the forces are not constant due to uncertainty and noise in data during
the demonstration process. Additional care needs to be taken to extract the constant
force in the Z direction, as shown in Fig.4.14. The figure shows that the constant region
of force profile is limited to a certain range. Extracting the average value for the entire
segment is not suggested and needs to be extracted by averaging the values of the constant
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Figure 4.14.: Constant Force extraction from low variance region

region. The force profile is segmented again using change point segmentation to obtain
segments of similar values and obtain desired force by averaging the region of low variance
to address this issue. Thus, a viable constant value can be obtained by averaging a low
variance region of the force profile of the entire segment.

The summary of the feature extraction for the Slide skill is shown in table 4.1.

S.No Feature Description

1 Segmentation Type Demonstrated data is segmented into multiple segments
using Unsupervised clustering methods, each segment
represents a movement primitive.

2 Compliant Frame Obtain CF for each segment by fitting a “plane” con-
straint.

3 Selection Matrix Fixed with respect to CF. Position control in X and Y
directions and force control in Z direction with respect
to CF. Selection Matrix = diag([1,1,0,1,1,1]).

4 Desired Position DMP in X,Y dimensions from demo data
5 Desired Orientation Quaternion DMP.
6 Desired Force Constant obtained from average of values in low variance

region.

Table 4.1.: Overview of Features Extraction of Skill 1: Slide

Skill 2: Contour

Contouring skill performs a contouring task, in which varying force needs to be applied
in the direction of interaction. In order to learn and reproduce contouring skill, force
profile needs to be learned and varying compliant frame needs to be extracted. A local
coordinate system based on the force applied throughout the trajectory is extracted at
each point, shown in Fig.4.15, which can be defined as a compliant frame.

1) Segmentation: Similar to sliding skill, defining single MP for the entire trajectory is not
a viable solution. Therefore, trajectory is segmented into multiple movement primitives
by using Unsupervised cluster based segmentation based on position and force data from
the demo trajectory.
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Figure 4.15.: Illustration of Skill 2: Contour

2) Compliant Frame: For contouring skill, CF varies dynamically at each point of the
segment. CF is defined at a local coordinate system which is extracted based on demo
data at each point. To extract local coordinates at each point, different methods can
be used, for instance in [SLG18], local coordinates are extracted as Frenet-Serret frames
(Tangent, Normal and Bi-normal orthogonal vectors) using Gram-Schmidt process at
each point of the segment. This method of extracting local frames is quite convincing to
define CF. However, the direction of forces is neglected and it is uncertain how forces are
applied intuitively. A compliant way of defining constraint frames is proposed by Conkey
et.al in [CH18]. In [CH18], Z-axis of the Compliant Frame at each point is aligned to
the normalized force vector of unit length. And other orthogonal axes is constructed by
aligning end-effector Y-axis as one orthogonal candidate and applied cross products to
create a full right handed coordinate system. This method is sufficient to define CF,
with which forces can be applied intuitively with respect to CF at each point. Although
this method ensures compliant capabilities, the aforementioned method for construction
of other orthogonals is not viable to be adapted in this thesis. Thus, only the idea of
aligning Z-axis to normalized force vector of unit length is considered and the construction
of another orthogonal axis can be done with efficient strategies. Tomas et.al in [TJM99]
provided an efficient method for constructing a frame in the form of a rotation matrix
that rotates a unit vector into another unit vector. Here, a unit vector of Z axis in CF is
rotated into another unit vector of normalized forces and from the method proposed in
[TJM99], a rotation matrix will be constructed, which defines a compliant frame at that
point.
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3)Selection Matrix: In order to reproduce demonstrated contouring skill, Selection matrix
here is fixed with respect to the compliant frame. With respect to the CF at each point,
force is applied only in Z direction throughout the segment. Hence, position control is
selected in X and Y direction and force control is selected in the Z direction. It should be
remembered that the selection matrix defined here is with respect to CF and is defined
intuitively.

4)Desired Position: Desired positions for slide skills are learned from DMP module.
Change in initial and goal points can be adapted easily for the segments.

5) Desired Orientation: Orientations for contour skills are similar to position quantities.
Thus, orientation is learned as quaternions using Quaternion DMP module.

6) Desired Forces: Desired forces can be defined in two methods for contouring skill based
on task requirements. A simple way of defining desired force is by fixing a constant value to
apply on the contact surface in the direction of Z-Axis of learned CFs constructed earlier.
Another way of defining forces is by extracting magnitude of normalized force vector at
each point of the trajectory. The force profiles are learned by learning a DMP over force
data and the magnitude of the normalized forces at each point can be extracted such that
varying force applications at varying contact surfaces can also be incorporated.

The summary of the feature extraction for the Contour skill is shown in table 4.2.

S.No Feature Description

1 Segmentation Type Demonstrated data is segmented into multiple segments
using Unsupervised clustering methods, each segment
represents a movement primitive.

2 Compliant Frame Local Coordinate system at each point with Z axis
aligned to Normalized force vector.

3 Selection Matrix Fixed with respect to CF. Position control in X and Y
directions and force control in Z direction with respect
to CF. Selection Matrix = diag([1,1,0,1,1,1])

4 Desired Position DMP in X,Y dimensions from demo data
5 Desired Orientation Quaternion DMP
6 Desired Force Trajectory of force obtained by computing Magnitude of

Normalized force vector at each point of trajectory.

Table 4.2.: Overview of Features Extraction of Skill 2: Contour
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Skill 3: Touch

Touch skill is to interact with the environment until the robot slightly touches the contact
point. Force is not applied on the environment but force measured during the demon-
stration for touching an environment will be adapted as a goal force to perform touch
operation. When a touch skill is demonstrated, robot needs to learn path and contact
point from the demonstrated data and should be able to reproduce and adapt to the
dynamics of the environment. After demonstrating touch skill, during reproduction, the
robot moves along the learned path until the contact point has reached and then returns
in the other learned path after contact point. While executing a touch skill, three different
situations might occur during interaction with the environment as shown in Fig.4.16.

Demo
DMP1
DMP2

Pgoal
Fgoal

Pgoal Pgoal

Fgoal

Fgoal

Case IIICase II

Contact Surface
Contact Surface

Contact Surface

Case I

Figure 4.16.: Illustration of Robot Interaction with environment

In case I, dynamics of the environment may not change, such that goal point and contact
point remain same and touch skill will be executed as per demonstration. In case II, during
execution, when the environment moves farther, the contact point may not coincide with
the goal point and such a goal point needs to be changed dynamically to reach the contact
point. In case III, in contrast to case II, if contact point reaches earlier than expected,
the movement to reach goal point should terminate and should switch to another learned
path with current location as new initial point.

1) Segmentation: In order to learn and reproduce touch skill, the trajectory should be
segmented into two paths, approach path and return path. The segmentation is done at
the point of contact with the environment. After analyzing demonstration data, contact
point usually occurs at a point where maximum force occurs. Hence, a simple method
of segmentation is done at maximum force point in the demo trajectory. Other methods
of segmentation from the previous section like cluster based and change point method
based segmentation also gives similar results, yet simple method of segmentation is more
intuitive if dynamics of the environment are maintained.

2) Constraint Frame: While executing touch skill, robot interacts with an environment
only near contact point. Compliant Frame needs to be extracted at this contact point to
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Figure 4.17.: Illustration of Skill 3: Touch

track the forces for the identification of contact state. A local coordinate system similar to
contour skill is extracted at this point, such that instead of tracking forces in all directions
to identify contact state, force is tracked along the direction of Z-axis in CF.

3) Selection Matrix: For touch skill, the interaction forces are not reproduced but tracked
to reach the contact point or touch location. Thus, only position control is sufficient to
move the robot and force control is not required in any direction. Forces are tracked
simultaneously during the movement learned from demonstration only to track contact
state and force control switching is not required while executing touch skill.

4) Desired Position: DMPs are used to learn the path of approach and return. How-
ever, the initial and goal points are adapted to the changes in the contact state while
reproducing as shown in the figure 4.16 by considering the feedback from the robot.

5) Desired Orientation: Orientations for touch skills are similar to position quantities.
Thus orientation is learned as quaternions using Quaternion DMP module.

6) Desired Forces: Although force control is not used to perform touch skill, goal force
defined as force at contact point needs to be tracked in the direction of Z-axis in CF to
identify contact point. Thus, the desired force to track the contact point can be obtained
by computing the normalized force vector at the segmentation point, which is also a
contact point.

The summary of the feature extraction for the Touch skill is shown in table 4.3.
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S.No Feature Description

1 Segmentation Type Segment the demo data into two MPs at a point where
maximum force occurs.

2 Compliant Frame Extract Local Coordinate system at each point with Z
axis aligned to Normalized force vector.

3 Selection Matrix Position control in X .Y and Z directions, until the goal
point has reached, Selection Matrix = diag([1,1,1,1,1,1]),
Switch to Force control after goal point reached, Selec-
tion Matrix = diag([0,0,0,1,1,1]). Switch Back to position
control to retract after reaching goal force, Selection Ma-
trix = diag([1,1,1,1,1,1])

4 Desired Position DMP in X,Y,Z dimensions from demo data
5 Desired Orientation Quaternion DMP
6 Desired Force Normalized force vector at the segmentation point which

is touch point.

Table 4.3.: Overview of Features Extraction of Skill 3: Touch

Skill4: Press

Press skill is similar to touch skill except that force control is involved here when the robot
interacts with the environment. In contrast to touch skill, in press skill, the robot applies
forces learned during a demonstration on the environment after reaching the contact point.
Until contact point is reached, robot moves in path learned from demonstration and robot
returns from the contact environment after applying learned forces. The entire process of
executing Press skill is shown in Fig.4.18 and Fig.4.19.

1) Segmentation: From the figure 4.18 it is certain that the trajectory of press skill needs
to be segmented into three parts. The first segment is an approach path to reach contact
with the environment. The second segment represents the interaction phase, where robot
interacts with the environment by applying contact forces learned from demonstration.
And the third segment is return path away from the contact with the environment. The
pattern of segments varies quite convincingly through time. Such disruptive event changes
that can reflect on the position and force variables of demonstrated data are noticeably
identifiable using change point detection based segmentation.

2) Constraint Frame: Similar to touch skill, compliant frames are extracted only at seg-
mentation points which are also interaction points. Compliant Frame needs to be ex-
tracted at this contact point to track the forces for the identification of contact state.
A local coordinate system similar to contour skill is extracted at this point, such that
instead of tracking forces in all directions to identify contact state, force is tracked along
the Z-axis in CF.



54 4. Approach

Pos
DMP

Force 
DMP

Pos
DMP

Interaction with 
Environment

1

S1

2

3

S2 S3

Figure 4.18.: Illustration of Robot Interaction with environment

Z

XY

BF

Z

XY EF

Figure 4.19.: Illustration of Skill 4: Press

3) Selection Matrix: For press skill, during approach path the interaction forces are
only tracked to reach the contact point or interaction point. Thus, only position control
is sufficient to move the robot and force control is not required. Selection matrix is
chosen such that X, Y, and Z are chosen for position control. While executing the second
segment, robot is under interaction with the environment and should be switch to the
force controller. After applying learned interaction forces, control will switch back to
position control while executing the third segment.

4) Desired Position: DMPs are used to learn the path of approach and return. How-
ever, the initial and goal points are adapted to the changes in the contact state while
reproducing as shown in the figure 4.18 by considering the feedback from the robot.

5) Desired Orientation: Similar to position learning, orientations are also learned using
Quaternion DMPs to adapt the dynamic changes in the environment.

6) Desired Forces: Learning press skill involves learning two different force components.
Firstly, contact force at interaction points or segmentation points similar to touch skill
needs to be learned to track the contact state during the approach path. Additionally,
during the interaction phase, the robot should also learn the forces applied during the
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demonstration while in contact. Hence, force profiles during the second segment can be
learned by using DMPs. The summary of the feature extraction for the Press skill is
shown in table 4.4.

S.No Feature Description

1 Segmentation Type Segment the demo data into three MPs from change point
detection algorithm.

2 Compliant Frame Extract Local Coordinate system at each point with Z
axis aligned to Normalized force vector.

3 Selection Matrix Position control in X .Y and Z directions, until the end
of first segment, Selection Matrix = diag([1,1,1,1,1,1]),
Switch to Force control during second MP, Selection Ma-
trix = diag([0,0,0,1,1,1]). Switch Back to position con-
trol to retract after during third MP, Selection Matrix =
diag([1,1,1,1,1,1])

4 Desired Position DMP in X,Y,Z dimensions from demo data
5 Desired Orientation Quaternion DMP
6 Desired Force Force profile in X,Y,Z for second segment by learning

DMPs

Table 4.4.: Overview of Features Extraction of Skill 4: Press

4.2.3. Skill Based Controller Adaption

Classical Hybrid controller from earlier sections shown in Fig.4.11 is not adequate to
reproduce skills that are learned based on the aforementioned features. The existing con-
troller works well if there are no transformations of state variables. However, Compliant
Frames are one of the major features of the skill that undergo transformation (Rotation
and Translational), which favours to apply forces intuitively. Consequently, Stiffness pa-
rameter Kc and selection matrix S in the equation 4.14 are diagonal matrices framed
based on interaction forces are also defined with respect to the compliant frame. CF
varies for each skill and such transformations should be incorporated in the control law
written in equation 4.14.

Conkey et.al in [CL18] addressed the similar issue. Selection Matrix is pre-multiplied with
the transpose of the Rotation matrix which defines CF and post multiplied with the same
Rotation matrix of CF. This idea of transformation of matrices can be employed in this
thesis to be able to incorporate in the Hybrid control law. However, the same strategy
cannot be adapted directly without further modifications for two main reasons: 1) Stiff-
ness matrix is not defined in [CH18] because the Cartesian inverse dynamic controller is
used instead of impedance controller and 2) Only rotational transformation of Constraint
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frames where considered which is sufficient for the tasks explained in the paper, whereas
in this thesis the objective is to develop a robust and generic controller that should be
able to use for different skills that includes transformations considering both rotation and
translation of compliant frames.

A unified position force control is proposed by Marin et.al in [MW16] is an another control
strategy that allows rigid transformation of the compliant frames. The motion commands
are represented by means of twists and wrenches and are kinestatically filtered before
passing to respective position and force controllers. The filters are designed by considering
the rigid transformation of compliant frame such that by filtering, the transformation of
commands is handled by default. This is an appealing strategy to be incorporated in this
thesis. However, this methods cannot be adopted directly because the idea of addressing
the rigid transformation of CF by Kinestatic filtering performed on twist and wrench
commands before passing it into respective controllers is different with respect to this
thesis. Instead of transforming commands, it is intended to transform only selection
matrix and stiffness matrix because motion and force commands are learned through
feature extraction methods provided earlier are in base frame. Also, in contrast to the
requirement of defining stiffness matrix in CF, kinestatic filtering method according to
[MW16] has not addressed the transformation of stiffness matrix because it is fixed with
respect to the base frame.

Based on the understanding acquired from the above two strategies employed in [CL18]
and [MW16] and the requirements of this thesis for handling the rigid transformations of
compliant frames, a generic control equation is derived suitable for most of the skills as
follows. Rewriting the classical hybrid control law from equation 4.14:

τ = JT (q)(Kc(S)(ep) +DxJ(q)θ̇ + g(q)) + JT (q)(Kp(S̃)(ef ) +Ki(S̃)
∫
efdt)

(4.16)

for simplicity, considering orientations are represented as euler angles and rewriting above
equation in End-effector frame as:

τ = JT (q)(EFKc(EFS)(EFep) +DxJ(q)θ̇ + g(q))

+JT (q)(Kp(EF S̃)(EFef) +Ki(EF S̃)
EF∫
efdt)

(4.17)

In the above equation stiffnessKc and selection matrix S and its compliment S̃ = (I6−S)
are mentioned in end effector frame EF . Aforementioned requirement for Stiffness and
Selection matrices as diagonal matrices should be defined in compliant frame. Represent-
ing above quantities from EF to CF needs transformation of 6x6 matrices between one
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frame to another frame. The transformation of Stiffness matrices between frames is pro-
vided in [Lon87] and explained in detail in [MLS17]. The transformation of 6x6 matrices
can be done by using adjoint matrices derived from homogeneous transformation matrix
of a transformed reference frame. In contrast to homogeneous transformation, adjoint
matrices are used to transform twists and wrench quantities represented in 6x1 vectors
respectively.

CF can be represented in homogeneous transformation matrix with rotation R and trans-
lation p as:

EFTCF =
 R p

0 1

 (4.18)

According to [MLS17], the adjoint matrices for twist and wrench quantities from the above
homogeneous transformation 4.18 can be written as follows:

EFAdCF =
R [p̂]R

0 R

 and EFAdgCF =
 R 0

[p̂]R R

 (4.19)

Where EFAdCF is used for transformation of twist and EFAdgCF is used for transfor-
mation of wrench vectors. And [p̂] is skew symmetric matrix of the translational vector
p. Using above adjoint matrices from equation 4.19, transformation of stiffness and se-
lection KcS and compliment of selection matrix S̃ can be represented in CF from EF as
follows:

Ω = EFKc
EFS = EFAdgCF

CFKc
CFS EFAdCF

−1 (4.20)

Ω̃ = ẼFS = EFAdgCF C̃FS EFAdgCF
−1 (4.21)

By substituting equation 4.20 in 4.17, a new control law is obtained as follows:

τ = JT (q)
(
Ω
(
EFep

)
+DxJ (q) θ̇ + g (q) + (KpΩ̃ EFef +Ki

∫
Ω̃ EFefdt)

)
(4.22)

Modified controller scheme based on equation 4.22 is shown in the figure 4.20



58 4. Approach

xd

xmsr

𝝉

fd

fmsr

+

-

+

+

+
ep

ef

-

Figure 4.20.: Modified Hybrid Position-Force Controller

4.3. Summary

The presented approach of skill based learning for contact based tasks allows learning
of demonstrated trajectory of a skill with just a single demonstration. The approach is
employed in two phases. In the first phase, suitable segmentation algorithms for skill based
learning is identified. Then on the segmented trajectory, to learn a Movement Primitive
for each segment, Dynamic Movement Primitive is employed for learning of position,
orientation and force quantities that facilitates adaption to novel situations such as new
initial and final goal states. A suitable controller is identified which is a Hybrid Position-
Force controller that allows control of position and force to execute contact based tasks. In
the second phase, methods are employed focusing on skill based parameterization, where
skill features are identified and extracted that represent a skill and are able to be used for
reproducing a skill by learning. Later, hybrid position-force controller is adapted to the
requirements based on features such as rigid transformation of task frames. In the next
chapter, the evaluation of the approach will be presented by conducting experiments for
each skill.



5. Experiments and Evaluation

For evaluating proposed skill based learning framework, existing demonstration data that
is recorded by kinesthetic demonstration on DLR LWR-IV is used. Experiments for four
preliminary skills: Touch, Press, Slide and Contour are conducted under Simulation en-
vironment. This section details the experimental setup implemented for the approach
employed, experiments conducted for each skill, and interpretation of results in compari-
son with simple trajectory learning.

5.1. Experimental Setup

Skills are learned from demonstration data and features are extracted using Skill Learn-
ing module implemented in Python based on the approach provided earlier. Extracted
skill features are used to generate the position, orientation and force trajectories. Hybrid
Position-Force controller derived in section 4.2.3 is implemented entirely in MATLAB
Simulink package. A Python program is written to interface with Bullet Physics simula-
tion environment using PyBullet API that handles the commands to robot and provides
feedback of the robot state. The entire architecture runs under PC with configuration:
OpenSuse Linux 15.2, Intel Xeon 8 core CPU @ 3.60GHz and 32GiB RAM.

Generated trajectories and skill features are provided as an argument to the Simulink
Model for Hybrid Controller that generates the joint torque commands for robot. DLR
LWR-IV robot model is loaded into the environment which is defined in Unified Robot
Description Format (URDF) file. The robot recieves the command from the Simulink
model and provides robot state as feedback to Skill Learning module and Simulink Model
to generate commands for the next time step. The overview of the signal flow between
modules is shown in Fig.5.1 All the modules are interfaced through a middleware called
Links and Nodes, which is a DLR framework that offers interface between distributed
computing modules based on publisher-subscriber model. The overview of interface is
shown in the Fig.5.2.
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5.1.1. Demonstration Robot

Demonstrations are recorded on DLR LWR-IV robot by using Kinesthetic Demonstration
strategy. LWR-IV is a Light Weight Robot as shown in Fig.5.3 has 7 DOF for manipula-
tion with kinematics similar to human hand with force torque sensor mounted on the end
effector joint. LWR Robot works under torque control mode at joint level enabling robot
to control with joint torque commands. A cartesian Impedance Control at higher-level as
shown in the Fig.5.3a [AHO07]. Joint torque control also enables the robot to control in
"Zero Gravity Mode" in which the motor compensates the robot dynamics and weights.
Demonstrations are carried out under Zero Gravity Mode and the demonstration data
is recording with the help of force-torque sensor mounted on the robot 5.4. A high-level
impedance control as explained in the section 4.1.4 generates torque commands for each
joint by using robot kinematics, dynamics and current robot state for the commanded
position. Joint torques generated by impedance controller are tracked and controlled by
joint level torque controller for each joint enabling compliance behavior for the robot.



5.1. Experimental Setup 61

3.3 Inverse kinematics

In contrast to the commonly used well-known Moore-

Penrose pseudoinverse, a constraint optimization algorithm

was chosen and investigated for dealing with the inverse

kinematics problem of the redundant LWR (Grunwald et al.,
2003). An algorithm was developed which allows the

introduction of constraints at the kinematics level. With this

constraint optimization approach, singularity handling is

realized, in order to enable the crossing of singularities

along a specified path. For singularity crossing, two different

strategies are known: deviation from the desired trajectory

and deceleration from the desired trajectory. Within the

implemented algorithm, both strategies are unified;

deviation in specified directions and deceleration can be

combined and arbitrarily mixed within the optimization

problem.

Figure 5 Structure of Cartesian impedance controller
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(a) Controller Overview of DLR LWR Robot
(b) Robot Model

Figure 5.3.: DLR LWR Robot, Source:[AHO07]

(a) Demonstrating a Skill

or transportation tasks [15], [16]. However, none of these
approaches addressed sensing of object locations in the
environment. A force-based learning framework is proposed
in [17], where the robot continuously reacts to force variables
which have been identified by Mutual Information analy-
sis. The framework does not consider motion segmentation
required to reach absolute positions alongside with several
robot skills, such as pick and place. Continuous online
movement adaption by force perceptions is also presented in
[10], [17] and [18] but they are again not suitable in a task
requiring both fixed and adaptive positions. Learning force-
based tasks combined with motion segmentation in different
frames of reference is proposed in [19], which requires
vision-tracked object positions, where our approach extracts
important points vision-free during demonstration. Another
learning scheme pairs vision with tactile sensing [20] and
focuses on material and object detection. The system is not
bootstrapped from demonstration and the inferred class is
not used to adapt the robot’s behavior. In the context of
segmenting and sequencing, [21] proposes the prediction of
manipulation phases and [22] shows learning of hierarchical
skills by reinforcement learning, where both approaches
require object tracking if the object is not initially in the
hand. Learning of complex tasks using kinematic and video
data is proposed in [23]. In [24], compliant manipulation is
achieved by interaction-based phase transitions in a Hidden
Markov Model, where non-linear motions in free space and
exact goal points in free space were not addressed. In [25],
autonomous exploration of the whole workspace is combined
with tactile-based object discrimination. In [26], the search
policy is learned from human behavior to act in the whole
workspace, where we instead focus on the transfer of spe-
cialized skills to rapidly program and execute a novel task.
The approach in [27] combines in-hand object localization
using a tactile sensor array with tactile based manipulation.
During execution, a DMP approach is used similarly to [28],
which reproduces both desired motion and tactile trajectory.
More elaborate sensing techniques make use of embedded
sensors in gripper fingers [29], or tactile sensor arrays for
object recognition [30]. The latter authors use sampling-
based motion planning [31], which requires a model of the
environment or a huge number of real robot executions.
Learning from human hand motion observation is presented
in [32], with the goal to correct wrongly observed hand
postures with the sensed contact information while grasping.
The authors of [33] present teaching of stiffness profiles,
where a haptic interaction lies between robot and human
in order to adapt the compliance to the task requirements.
A large review about tactile sensing in [34] shows that a
variety of sensors is available but the major challenge lies in
development of novel manipulation algorithms.

III. SKILL IDENTIFICATION FROM HUMAN
DEMONSTRATIONS

We propose a learning from demonstration framework,
which extracts skills from a demonstrated task. A skill
is a predefined robot behavior [35] parameterized by the
demonstrations. First, we introduce our Task Demonstration
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Fig. 2. Kinesthetic teaching by manually guiding the robot (a) and
controlling gripper actions and demo recording by a foot pedal (b). Labeled
segments and identified skills (c)

System and explain how the user transfers the sequence
of skills to the robot (starting in Fig. 1 at the top left).
The Task Segmentation produces labeled segments of the
demonstration data. The next step in our learning framework
is the Skill Identification, where we construct predefined
skills from the previously labeled segments.

A. Task Demonstration System

The system is able to identify a sequence of predefined
robot skills, which can be motion in free space (MF), haptic
exploration (HE), and motions ending with gripper open
(GO) or gripper close (GC). The software framework is im-
plemented in Python, communicating via a realtime-capable
C++ middleware with Matlab/Simulink models connected
to the robot. In order to demonstrate a task consisting of
a sequence of skills, the robot is guided by kinesthetic
teaching. Hereby, the user guides the robot using a hold
close to the tip of the robot (see Fig. 2a). Whenever the
user wants the robot to explore a part of the environment,
the user lets the gripper fingers or other parts of the gripper
touch the desired object while the gripper state can be open
or closed. The interaction forces are recorded by a force-
torque (FT) sensor, mounted between robot tip and gripper.
Gripper actions can be triggered by a foot pedal (see Fig. 2b).
During teaching, the robot position xp ∈ R3 and orientation
quaternions elements xo ∈ R4, interaction FT measurement
f ∈ R6 and gripper state g are recorded. A FT measurement
consists of f = [fx, fy, fz, tx, ty, tz]

T and the gripper state
is defined by g = {1 if gripper open;−1 if gripper closed}.
The whole input vector is denoted as x = [xp,xo,f , g]

T .
Each sample of user demonstration i is stacked in a matrix
Xi ∈ RNd×Ni

, where Nd is the number of input dimen-
sions and N i the number of samples in demo i. The set
T = {X1, ...,XI} consists of I demonstrations, where our
method requires a minimum number of I = 2. Ideally, the
user covers significant changes in object locations to extract
the variance in the data. In fact, the length of an exploration
path is derived from the exposed variance during teaching.

(b) Sensor mounting and hand hold
position, Source:[ESL19]

Figure 5.4.: DLR LWR Robot, Source:[AHO07]

5.1.2. Links and Nodes

Links and Nodes (LN) is a realtime communication middleware, which is DLR’s internal
framework. It is similar to other frameworks like Robot Operating System (ROS) [OSR14]
and Robot Construction Kit (RoCK) [Roc13]. It works on the basis subscriber-publisher
model that interface different computing modules via topics or as services. Modules com-
municate with each other by publishing and subscribing the topics or service accordingly.
Modules can either be deployed locally or via network. LN manager is a GUI tool that
provides an overview of the interface and maintains the deployment of the modules, top-
ics and interface independent of the system limitations. Modules can be configured and
maintained through LN manager and also allows logging of published topics for debug-
ging. Links and Nodes supports multiple platforms such as API are available for C++,
Python and MATLAB Simulink to interface with LN for publishing and subscribing the
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topics for interprocess communication. In this thesis modules in Python and MATLAB
Simulink are implemented and interfaced through LN as shown in Fig.5.2. The modules
of this thesis are maintained and deployed through LN manager as shown in Fig5.5

Figure 5.5.: Links and Nodes (LN Manager)

5.1.3. Skill Execution and Learning Module

Skill Execution module is a Python program that manages the execution of skill by
importing data, skill learning, and generating commands to the hybrid controller. Module
imports data which is recoded from the demonstrations and perform learning on the data
using Skill Learning module. Learning a skill is extracting identified features such as
position and orientation DMPs, compliant frames, selection matrix and desired forces
specific to each skill as explained in section 4.2.2. Output of the Skill Learning module
which is extracted features are used by the Skill Execution module to generate a cartesian
command to the Hybrid Controller at each time step. The cartesian command generated
is a trajectory of position, orientation and force profiles obtained from DMPs, adapted to
the task requirements and current state along with other task specific parameters such as
stiffness matrix, selection matrix and compliant frame.

Skill Execution Module is interfaced with other modules through Links and Nodes as
shown in the Fig.5.2. Module publishes the cartesian command and subscribes to robot
state.
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5.1.4. Hybrid Controller Module

Hybrid Position-Force controller devised in the section 4.2.3 is realized in MATLAB
Simulink package. The module subscribes to robot state from PyBullet Interface and
cartesian command from Skill Execution Module. Joint torque commands for all joints
of the robot are generated for each time step. This module publishes these commands as
a topic to Links and Nodes Interface.
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5.1.5. PyBullet Interface Module

Experiments are carried out on simulation environment called Bullet Physics using Py-
Bullet Python package. PyBullet is an easy to use Python module for physics simulation
for robotics, games, visual effects and machine learning. PyBullet can load articulated
bodies from URDF or SDF file formats. PyBullet provides forward dynamics simulation,
inverse dynamics computation, forward and inverse kinematics, collision detection and
ray intersection queries [E C16]. PyBullet Simulation Environment is chosen to conduct
experiments because all the requirements such as simulation of kinematics and dynamic
quantities, simulation with feedback of forces and torques, interaction and collision feed-
back and simulation of force torque sensors to conduct experiments for this thesis can be
met by using PyBullet simulation package.

PyBullet Interface module is a Python code that interfaces with other modules of the
project through Links and Nodes and manages the simulating robot and environment
using PyBullet APIs. Robot model of DLR-LWR is defined in a URDF file included with
meshes. This will be loaded into the environment along with other environment objects
as shown in the Fig.5.7. The robot is configured to use in Torque Control mode with
Force-Torque sensor enabled at end effector joint.

Figure 5.7.: PyBullet Simulation Environment with DLR LWR Robot

This module subscribes to the joint torque commands published by Hybrid controller of
Simulink model and joint torques are commanded to the configured robot at each time
step. Interface module publishes robot state that includes position, orientation, reaction
forces, joint angles, mass matrix, Jacobian matrix and velocities at each time step.
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5.2. Experiments

Aim of this section is to evaluate if the employed approach fulfills the goal of the thesis
to learn contact based tasks by skill based learning approach with single demonstration.
Experiments are conducted on four basic skills with multiple trials by changing the envi-
ronment in each trial. Skills are learned from single demonstration and reproduced under
simulation with varying environment. The results are extracted and evaluated for each
skill as follows:

5.2.1. Skill 1: Slide

For a sliding skill, constant contact force normal to an arbitrary plane needs to be applied.
Demo trajectory is segmented by using Agglomerative cluster based segmentation to re-
duce complexity of the trajectory for DMP learning. By fitting a plane constraint to each
segment, compliant frame can be extracted. A constant normal force can be extracted
from the low variance region of Z-axis force profile in compliant frame for each segment.
Figure 5.8 shows overview of the execution of Slide skill. The figure 5.9 shows the ex-
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Figure 5.8.: Overview of the Execution of Skill 1: Slide

perimental results of reproduction of an example Slide skill which has only one segment.
The table in the environment is shifted down about 0.05m, 0.08m and 0.1m respectively
during each trial and skill is reproduced without any additional inputs about changes in
the environment. Results of each trial are compared with demonstration trajectory and
simple DMP learning.

From the Fig. 5.9 it can be interpreted that, with change in the environment, sliding skill
adapted the changes and reproduced the skill with same interaction behavior in all the
trials. The figure 5.9a shows the comparison of demo and reproduced trajectories of three
different trials which is rendered in PyBullet Environment. In the Fig.5.9b, demonstrated
trajectory coincides with the trajectory from the learned DMP and reproduced trajectories
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(a) Visualization of 3D Trajectories in PyBullet

(b) 3D Trajectory in World Frame with ex-
tracted CF as Plane

(c) Demo Force Profiles in WF and in CF with
Learned Normal Force in CF

(d) Reproduced Force Profiles in CF with
Learned Normal Force in CF

Figure 5.9.: Experimental Results of Skill 1: Slide

exhibit same behavior on the varying environment. The adaption capability of DMPs for
novel situations enables the skill to be adapted to new initial and goal points instead of
reproducing same trajectory. This behavior can be observed in subsequent skills. For a
fair comparison, DMP trajectory with reproduced trajectories without any adaptations to
initial and goal state are compared. Extraction of constant normal force in CF is shown
in the Fig.5.9c. Constant force is obtained over a low variance region of the Z-axis force
profile in CF. Figure 5.9d shows that, slide skill is able to apply a constant normal force
in Z direction in Compliant frame for entire trajectory and is same in all trials. Forces in
X and Y directions are from the position control in CF and is of no interest to compare,
as it is intended to observe the interaction with environment only through normal force
in CF.
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5.2.2. Skill 2: Contour

For a Contour Skill, force application at each point varies and will be learned using DMP.
However, instead of controlling forces in all directions, a CF is extracted at each point
and forces are applied only in the Z-direction. Position control is enabled in X and Y
directions and force control is enabled in Z direction of CF. At first trajectory segmentation
is performed using cluster based segmentation then the compliant frame at each point and
force that needs to be applied in CF are extracted from the learned force trajectories of
the demo data. A smooth trajectory of normalized force from force vector at each point
that is applied in the Z direction of CF is obtained. A local coordinate system at each
point can be represented as compliant frame, which is extracted by aligning a Z axis of
an arbitrary frame with unit direction of force vector at each point. The overview of the
Contour Skill execution is shown in Fig.5.10
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Figure 5.10.: Overview of the Execution of Skill 2: Contour

Figure5.11 shows the experimental results of reproduction of Contour skill with vary-
ing environment in each trial. Reproduction results are compared with demonstration
trajectory and simple DMP learning.

From the Fig. 5.11 it can be interpreted that, with change in the environment, contouring
skill adapted the changes and reproduced the skill with same interaction behaviour in all
the trials. An example of a contouring task as shown in the Fig.5.11a is considered for
conducting the trials. The figure shows the visualization of 3D trajectories in the PyBullet
environment. In Fig.5.11b, 3D trajectories of Demo, Learned and Reproduced trials are
shown along with the dynamically varying compliant frame that is extracted at each point
by aligning the CF Z-axis to the direction of force vector at each point. The demonstrated
trajectory represented as dotted lines coincides with the trajectory from the learned DMP
represented in dashed lines. The deviation in paths of trials two and three are caused due
to more deviation in the environment. A varying smooth Z-Axis force in CF is extracted
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(a) Visualization of 3D Trajectories in PyBullet (b) 3D Trajectory in World Frame with ex-
tracted CF as Plane

(c) Demo Force Profiles in WF and with
Learned Force trajectory in Z direction in
Varying CF

(d) Reproduced Force Profiles in CF with
Learned desired Force in CF

Figure 5.11.: Experimental Results of Skill 2: Contour

by computing magnitude of the force vector is shown in the Fig.5.11c. The Figure 5.11d
shows that, contour skill is able to interact with the environment by applying varying force
in varying Compliant frame at each point. Forces in X and Y are caused due to fixed
position control in varying CF. The force profile in all the trials exibit similar behaviour
and is able to track the forces in Z direction with desired forces in CF.
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5.2.3. Skill 3: Touch

For a touch skill, the robot learns to perform touch operation, where forces are not applied
on the environment but robot moves until it reaches the environment with learned contact
force while demonstration. At first the trajectory is segmented into two as approach and
departure paths at maximum force point where robot touches the environment during
demonstration. DMPs are learned for two paths and contact force at segmentation point
is extracted to track the required touch or contact with the environment as shown in
Fig.5.12.
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Figure 5.12.: Overview of the Execution of Skill 3: Touch

During skill execution, there is a possibility of three different cases as shown in the
Fig.4.16. Trajectory points are extracted and in parallel, contact state of the robot is
tracked from the feedback of robot state. Until the contact state is occurred, robot con-
tinues to move in the path of approach learned from DMP. On the other hand, if contact
point has not reached even when approach path learned from DMP is executed, position
commands are incremented in small values in the direction of contact force to reach envi-
ronment. When a contact point is achieved either before intended goal position or after
goal position, current position is considered as new initial position for departure path
DMP and trajectory commands are generated to move away from the environment in
the adapted path for departure. This adaption mechanism and state sequencing during
skill execution as depicted in Fig.5.13 ensures that during skill reproduction, robot is able
adapt to the environment dynamics.

Figure5.14 shows the experimental results of reproduction of Touch skill with three dif-
ferent interaction scenarios in each trial. Reproduction results are compared with demon-
stration trajectory and simple DMP learning.

From the Fig. 5.14 it can be interpreted that, with change in the environment, Touch
skill adapted the changes and reproduced the skill with same interaction behaviour in
all the trials. An example of a Touch task as shown in the Fig.5.14a is considered for
conducting the trials. The figure shows the visualization of 3D trajectories in the PyBullet
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Figure 5.13.: State sequencing of Skill Execution for Skill 3: Touch

environment. In Fig.5.14b, 3D trajectories of Demo, Learned and Reproduced trials are
shown along with the compliant frame extracted at segmentation point. The demonstrated
trajectory represented as dotted lines coincides with the trajectory from the learned DMP
represented in dashed lines. Demonstrated forces are used to segment the trajectory into
two paths by defining segmentation point at maximum force point or touch point as
shown in the Fig.5.14c. The Figure 5.14d shows that, touch skill is able to interact with
the environment by identifying the contact point and by applying the defined contact
force on to the environment. Contact force at interaction point, can either be applied by
extracting from data or can be defined.

In the trials, a fixed contact force about 1N is considered and such the force profile in
Fig.5.14d shows that, when robot reached contact with environment it stays in contact
until the defined contact force is applied. After applying the contact force, robot returns
in the departure path adapting the contact location as new initial point.
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(a) Visualization of 3D Trajectories in PyBullet
(b) 3D Trajectory in World Frame with ex-

tracted CF as Plane

(c) Demo Force Profiles in WF with segmenta-
tion at max force or touch point (d) Reproduced Force Profiles in WF

Figure 5.14.: Experimental Results of Skill 3: Touch

5.2.4. Skill 4: Press

For Press skill, the robot should learn and reproduce the pressing operation, where, robot
approaches the environment and applies pressing forces on to the environment. At first
during skill learning, demo data is segmented into three segments corresponding to three
states as shown in the Fig.4.19. DMPs are learned for position, orientation for approach
and departure paths and forces are learned for intermediate segment using DMP. Skill
execution is performed by sequencing the states and adapting to environment dynamics
based on contact state. The figure 5.15 gives an overview of skill reproduction.

Skill execution is performed in three states, at first, the trajectory points are extracted
for each time step and in parallel, contact state of the robot is tracked from the feedback
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Figure 5.15.: Overview of the Execution of Skill 4: Press

of the robot state. The robot moves in the approach path learned using DMP until it
reaches the environment. Interaction forces learned from demonstration are applied on
the environment. Later, current position is initialized as initial state for departure DMP
and robots starts moving away in the adapted departure path. The state sequence and
adaption implemented during the skill execution as shown in the Fig.5.16 ensures that
during reproduction, robot adapts to the dynamic changes in the environment.
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Figure 5.16.: State sequencing of Skill Execution for Skill 3: Touch

Figure5.17 shows the experimental results of reproduction of Press skill with three different
trials by varying environment in each trial. Reproduction results are compared with
demonstration trajectory and simple DMP learning.

From the Fig. 5.17 it can be interpreted that, with change in the environment, Press
skill adapted the changes and reproduced the skill with same interaction behaviour in
all the trials. An example of a Press skill as shown in the Fig.5.17a is considered for
conducting the trials. The figure shows the visualization of 3D trajectories in the PyBullet
environment. In Fig.5.17b, 3D trajectories of Demo, Learned and Reproduced trials are
shown. The demonstrated trajectory represented as dotted lines aligns with the trajectory
from the learned DMP represented in dashed lines. Demonstrated forces are learned
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(a) Visualization of 3D Trajectories in PyBullet

(b) 3D Trajectory in World Frame

(c) Demo Force Profiles and with Learned Force
trajectory in WF (d) Reproduced Force Profiles in WF

Figure 5.17.: Experimental Results of Skill 3: Touch

using DMPs and are used to apply on the environment during interaction as shown in the
Fig.5.17c. The Figure 5.17d shows that, press skill is able to interact with the environment
by identifying the contact point and by applying the learned contact forces on to the
environment. Though the environment is changed for each trials, applied contact forces
at the interaction point on to the environment is similar in all the trials.
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5.3. Summary

This chapter presented the experimental setup implemented and the evaluation of the
approach presented earlier. The results are extracted and evaluated by conducting trials
on each skill under simulation environment.

Skills are demonstrated on DLR LWR-IV robot in Zero Gravity Mode and the data is
recorded for skill learning. Skill learning based on the approach proposed is to extract
the features by learning from demonstrated data. The feature extraction for each skill
is implemented in Python module. A skill execution module which is also implemented
in Python, at each time step generates a cartesian command from features that are ex-
tracted by using skill learning module. A hybrid position-force controller implemented in
MATLAB Simulink package receives the cartesian command from skill execution module
and generates a torque command to the robot in PyBullet simulation Environment that
is configured with DLR LWR-IV robot.

Trials are conducted on four preliminary skills: Slide, Contour, Touch and Press. For each
skill, results are interpreted on trials with varying environment. From the results obtained,
it can be interpreted that during reproduction each skill adapted to the changes in envi-
ronment. The results satisfied one of the main objectives to learn and reproduce contact
based skills that should be able to interact with the environment with same behavior and
adapt to novel situations which is in contrast to simple replay of the trajectories.



6. Discussion

This chapter covers the discussion regarding the results and the implications of the ap-
proaches proposed for skill based learning framework. The results are analyzed against
project goals, requirements and compared with simple trajectory replay. And finally this
chapter covers the limitations of the system and potential future work and improvements
that could possibly be implemented in the skill based learning framework.

6.1. Implications of the Results

By analyzing the results from the previous chapter for four skills, following important
points can be inferred:

1. For the skills considered so far, the features identified in chapter 3: Segmentation,
Compliant Frame, Selection Matrix, and desired trajectories are enough to represent
and reproduce a skill.

2. The hybrid controller architecture devised in chapter 3 satisfied the requirements of
features extracted such as rigid transformation of task frames, facilitates intuitive
force application using Compliant frames and selection matrix definition in compliant
frame. The same controller is utilized for all the skills without any modifications in
the strategy. Therefore, the hybrid control strategy employed can be generalized to
most of the skills with minimum or no modifications in the strategy for future skills.

3. The idea of identifying a Compliant Frame for each skill and defining selection matrix
and stiffness matrix in Compliant Frame allowed the reproduce the contact based
skills with similar behavior even when environment is varying.

4. The adaptive capabilities of DMP towards novel situations are well utilized to re-
produce the skill with interaction behaviour.
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6.2. Limitations

The framework presented in this thesis has not considered the application of interactive
torque, which limits the use of same features for torque based skills. The skills chosen so
far do not require learning of torque profiles. The interactive skills are able to learn only
desired contact forces. Therefore, the employed approach has not dealt with learning of
torques quantities.

The approximation function used in forcing term of DMPs as in equation 4.3 which is
learned using LWR with fixed number of weights wi, which is defined manually. Though
the function approximator learned the trajectories well to achieve the goal, there exists
approximation errors which increases with complex trajectories. Although, segmentation
methods presented reduce the complexity of trajectories, the approximation errors are not
considered during segmentation and such errors still exist.

In the approach presented for feature extraction in chapter 4, segmentation method to be
employed specific to each skill is provided. Yet, segmentation approaches implemented
requires manual intervention to tune parameters based on the task and skills.

6.3. Future work

As future work, intended to build a skill library by extending the proposed approach
to other skills. The approaches employed to frame skill templates for four skills can be
extended further for other commonly used skills in industrial applications like profile skills
such as bulb screwing and valve fitting, Peg-In-Hole, collaborative assembly tasks etc. An
advanced extension is to integrate skill specific algorithms into the framework for complex
skills such as Peg-in-hole tasks.

In addition to the features identified so far, further analysis needs to be carried out as a
future work to identify and extract features for complex skills, where torques and orienta-
tions are involved in interactive tasks, such as screwing and unscrewing bulb and opening
doors. Presented framework in this thesis targeted the interaction with environment with
only contact forces. As a future work a learning approach needs to be considered to learn
torque profiles either using DMPs or any other alternative methods to generate torque
trajectories.

Learning approaches like DMP can be further extended specifically to contact skills that
offers better generalization and adaption capability to interact with environment. As
proposed in [CH18], an extension for DMP called as contact DMP to adapt to goals
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dynamically based on contact state of the robot with environment. Similar approaches
can be employed to deal with contact based skills. Alternatively, in order to deal with
such contact based skills, MPs can be further extended to have closed loop architecture
to track the state and generate trajectories online while executing the task instead of
generating trajectories beforehand.

As explained earlier, the approximation errors due to the function approximation using
LWR may not represent a good imitation behavior of the demonstrated task. Therefore,
better approximation methods need to be employed to estimate the parameters accord-
ingly that are defined manually in current LWR method such as weights. The Receptive
Field Weighted Regression (RFWR) is a suitable alternative for function approximation
proposed in [Sch99]. Alternatively, more sophisticated methods based on task parame-
terization methods such as using Gaussian Process(GP) or Gaussian Mixture Regression
(GMR) as proposed in [Cal16] [PL18] can be explored further for possible extension of
DMPs and utilize for contact based tasks.

More sophisticated segmentation algorithms, which facilitate minimal user inputs will be
an add-on for building skill library. Also, though the segmentation simplifies learning
of complex trajectories by representing each segment as Movement Primitive, there is a
possibility of over segmentation or under segmentation for potential Movement Primitive
representations. A methodology to combine multiple segments as MPs such as DND
algorithm as mentioned in [MGK16] needs to be employed for developing skill templates.

Due to non-availability of robotic system, proposed approach for skill based learning is
entirely evaluated under simulation environment. Although, the demonstrated data is
obtained from physical robot, the skills are learned and reproduced on a simulated robot
under PyBullet simulation environment. Though the results obtained are reliable and
satisfactory, practical issues such as varying friction, dynamical uncertainties in the envi-
ronment and disturbances in mechanical, electronics and computing modules are ignored.
For better evaluation, it is recommended to perform trials on physical robot. As a future
work the experiments should be conducted on multiple robotic systems and results should
be compared to gain more practical insights and better understanding of the skill based
learning framework.





7. Conclusion

The main objective of this thesis work is to formulate a methodology to develop skill
based learning framework for contact based tasks. Approaches that are parameterized
more specific to each skill are employed in contrast to the generic approach by identifying
and extracting important features that represent a skill template. These features are used
to learn and reproduce the skill that displayed generalization and adaptive capabilities
with dynamically changing environments.

The skill specific approach for learning, which only requires a single demonstration of the
task is clearly a benefit over other LfD techniques that require more than one demonstra-
tion. Segmentation of movements and skill specific learning of features that are engineered
specifically for skills allowed the learning of complex tasks with a single demonstration.
The adaption and generalization capabilities of Dynamic Movement Primitives are well
utilized to adapt to the contact states with environment during skill reproduction.

To achieve the objective of reproducing contact based skills, a control strategy: A Hybrid
Position-Force controller is proposed for simultaneous control of position, orientation and
force quantities that also offers rigid transformations of compliant frames to reproduce
interaction skills.

Proposed methodology for skill parameterization was implemented over multiple modules,
which were interfaced through a realtime communication middle-ware. The implementa-
tion was evaluated under PyBullet Simulation Environment configured with similar robot
model DLR LWR-IV that was used for demonstration. The results were extracted and
interpreted by reproducing four preliminary skills: Slide, Contour, Touch and Press with
varying environments. From the results, it can be inferred that by using the methodology
that was proposed and implemented, skills were reproduced as per desired behavior by
learning from single demonstration and adapted to the changes in environment. The re-
sults satisfied the main objectives to learn and reproduce contact based skills that should
be able to interact with the environment with same behavior and adapted to novel situ-
ations which is in contrast to simple replay of the trajectories.

Limitations of the presented methodology was analyzed and future works are proposed for
further development of skill templates for other important skills. Embedding skill specific
algorithms and establishing contact or closed loop DMPs adapted for contact based tasks
are some of the potential future works relevant to contact based skills.
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A. Appendix

A.1. Movement Primitives

A.1.1. Locally weighted Regression

Linear regression aims to find a relationship between input and outputs such that Y =
XA, where, Y is output and X is input data and aim to find solution by minimizing L2
norm or least square error.

Â = arg min
A
‖Y −XA‖2 (A.1)

By differentiating above equation with respect to A and equating it to zero, we obtain
solution for the A for minimum least squares error.

Â = XT (XXT )−1Y (A.2)

Extending the above simple regression with weighted functions using φ(Xn) RBF defined
below, helps to fit nonlinear function over data to obtain relationship between input
X ∈ Rn×n and output Y ∈ Rn×n.

φ̃k (xn) = exp
(
−1

2 (xn − µk)>Σ−1
k (xn − µk)

)
(A.3)

where µk and Σk are the parameters of the kth RBF. An associated diagonal matrix can
be written as:

Wk = diag (φk (x1) , φk (x2) , . . . , φk (xN)) (A.4)

Similar to equations A.1.1 we obtain solution by minimizing the weighted L2 norm:

Â = arg min
A

(Y −XA)>W (Y −XA) (A.5)

We obtain a solution for A as follows:

Â = WX>
(
XWX>

)−1
Y (A.6)
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and finally we extract results from the regressor as:

Y =
K∑

k=1
WkXÂk (A.7)

A.1.2. Gaussian Process Regression

The output of the regressor y∗ is to estimate a posterior distribution for any given new
input data x∗. The combined joint probability for the given data and new data can be
given as:  y

y∗

 ∼ N
 µ (x)

µ (x∗)

 ,
 K (x,x) K (x,x∗)
K (x∗,x) K (x∗,x∗)

 (A.8)

The above joint probability can be used to obtain posterior distribution that results again
a Gaussian distribution.

p(y∗ | y) ∼ N (µ∗,Σ∗) (A.9)

Where,

µ∗ = µ (x∗) +K (x∗,x)K (x,x)−1 (y − µ (x))

Σ∗ = K (x∗,x∗)−K (x∗,x)K (x,x)−1K (x,x∗)
(A.10)

The kernel function in the above equation is so chosen to give the similarity of the input
points and such the posteriors are also strongly correlated to the inputs. RBF and periodic
kernels are two examples of commonly used kernel functions to define the similarity or
correlation between consecutive data inputs. Figure 2.5 illustrates the learned trajectory
for a given input data(+). The solid line represents the mean of the gaussian and the
gray area defines the variance in the posterior.

The computational complexity of GP is O(n3) which is much higher than the LWR. The
GP is further extended in [NP08] and [PMS13] to reduce the complexity.

A.1.3. Gaussian Mixture Regression

A.1.3.1. Gaussian Mixture Model

The data set can be modelled into GMM of dimensionality D and multiple Gaussians K
[CGB07]. Each Gaussian out of K can be represented by a Gaussian function with mean
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µk and covariance matrix σk. And each Gaussian can possess a prior, which represents an
initial likelihood of the trajectory, which is defined without considering any input data.
Prior of Gaussian also characterizes the trajectory generation. Consider a data sample xt

at time step t with mean µk and covariance σk of the kth Gaussian in the GMM.

Xt =
 xt

yt

 , µi =
 µx

i

µy
i

 , Σi =
 Σx

i Σxy
i

Σxy
i Σy

i

 (A.11)

In order to extract trajectory during reproduction, We estimate a multimodal distribution
P(yt|xt) at every time step.

P (yt | xt) =
K∑

i=1
hi (xt)N

(
µ̂y

i (xt) , Σ̂y
i

)
(A.12)

Where,

µ̂y
i (xt) = µy

i + Σy
i Σx−1

i (xt − µx
i ) (A.13)

Σ̂y
i = Σy

i −Σy
i Σx−1

i Σxy
i (A.14)

hi (xt) = πiN (xt | µx
i ,Σx

i )∑K
k πkN (xt | µx

k,Σx
k)

(A.15)

A.1.3.2. Hidden Markov Model

Consider a simple first order Markov model [CL18]:

P (s1, s2, . . . , sT ) = P (s1)
T∏

t=2
P (st | st−1) (A.16)

Which can be represented as:

P (st | s1, s2, . . . , st−1) = P (st | st−1) (A.17)

initial state and transition matrix A can be defined by

Πi = P(s1 = i) with
K∑

i=1
Πi = 1 (A.18)

ai,j = P(st+1 = j|st = i) (A.19)
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Thus the Markov model can be represented as

ΘMM =
{
{ai,j}K

j=1 ,Πi

}K

i=1
(A.20)

HMM differ from the above simple first-order Markov Model, where model comprises
hidden states. HMMs can be considered as a Markov chain with hidden states or a GMM
with latent variable. Similar to Markov model representation in the equation A.1.3.2 as
follows:

ΘHMM =
{
{ai,j}K

j=1 ,Πi,µi,Σi

}K

i=1
(A.21)

A.2. Segmentation Algorithms

A.2.1. Unsupervised Clustering

Algorithm 1 Agglomerative Hierarchical Clustering [JWH13]
1: Begin with n observations and measure (such as Euclidean distance) of all the (nC2) =
n(n− 1)/2 pairwise dissimilarities.Treat each observation as its own cluster.

2: for i = n, n− 1, ...2 : do
3: (a) Examine all pairwise inter-cluster dissimilarities among the i clusters and iden-

tify the pairs of clusters that are least dissimilar (that is, most similar). Fuse these
two clusters. The dissimilarity between these two clusters indicates the height in the
dendogram at which the fusion should be placed.

4: (b) Compute the new pairwise inter-cluster dissimilarities among the i-1 remaining
clusters.
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A.2.2. Change Point Based Segmentation

Algorithm 2 CHAMP (Change Point Approximate Model Parameters) [NOA15]
Input: Observations y1 : n, candidate models q1, ..., qr, prior distribution φ(q), min

segment length α, and max number of particles M
Output: Viterbi path of changepoint times and models

1: procedure ChangePointDetection(a, b)
2: maxpath, prevqueue, particles = {} . Initialize data structures
3: prev_queue.push(1/r)
4: for i = 1 : r do
5: new_p = newParticle(pos = 0,model = q_i, prev_MAP = 1/r)
6: particles.add(new_p)
7: for t = α : n do . Do for all incoming data, starting at time α
8: if t >= 2α then . Add new particles
9: pref = prev_queue.pop()

10: for i = 1 : r do
11: new_p = newParticle(pos = t− α,model = qi, prev_MAP = rev)
12: particles.add(new_p)
13: for p ∈ particles do . Compute fit probabilities for all particles
14: p_tjq = L(p.pos, t, q) · p(q) · p.prev_MAP
15: p.MAP = g(t− p.pos) · p_tjq
16: max_p = maxpp.MAP . Find max particle and update Viterbi path
17: prev_queue.push(max_p.MAP )
18: max− path.add(j = max_p.pos, q = max_p.model)
19: if fparticles.length > M then . Resample if too many particles
20: particles = stratOptResample(particles,M)
21: v_path = {} . Recover the Viterbi path
22: curr_cp = n
23: while curr_cp > 0 do
24: j, q = maxpath[currcp− a]
25: v_path.add(start = j, end = curr_cp,model = q
26: curr_cp = j

27: return v_path
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