Saha, Sudipan and Biplab, Banerjee and Zhu, Xiao Xiang (2021) Trusting Small Training Dataset for Supervised Change Detection. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1-4. IEEE. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels / Virtual. doi: 10.1109/IGARSS47720.2021.9553818.
PDF
243kB |
Official URL: https://igarss2021.com/view_paper.php?PaperNum=1476
Abstract
Deep learning (DL) based supervised change detection (CD) models require large labeled training data. Due to the difficulty of collecting labeled multi-temporal data, unsupervised methods are preferred in the CD literature. However, unsupervised methods cannot fully exploit the potentials of data-driven deep learning and thus they are not absolute alternative to the supervised methods. This motivates us to look deeper into the supervised DL methods and investigate how they can be adopted intelligently for CD by minimizing the requirement of labeled training data. Towards this, in this work we show that geographically diverse training dataset can yield significant improvement over less diverse training datasets of the same size. We propose a simple confidence indicator for verifying the trustworthiness/confidence of supervised models trained with small labeled dataset. Moreover, we show that for the test cases where supervised CD model is found to be less confident/trustworthy, unsupervised methods often produce better result than the supervised ones.
Item URL in elib: | https://elib.dlr.de/142165/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Trusting Small Training Dataset for Supervised Change Detection | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2021 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553818 | ||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | deep learning, change detection, small training set | ||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||
Event Location: | Brussels / Virtual | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||
Deposited On: | 10 May 2021 12:18 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page