elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Trusting Small Training Dataset for Supervised Change Detection

Saha, Sudipan und Biplab, Banerjee und Zhu, Xiao Xiang (2021) Trusting Small Training Dataset for Supervised Change Detection. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IEEE. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels / Virtual. doi: 10.1109/IGARSS47720.2021.9553818.

[img] PDF
243kB

Offizielle URL: https://igarss2021.com/view_paper.php?PaperNum=1476

Kurzfassung

Deep learning (DL) based supervised change detection (CD) models require large labeled training data. Due to the difficulty of collecting labeled multi-temporal data, unsupervised methods are preferred in the CD literature. However, unsupervised methods cannot fully exploit the potentials of data-driven deep learning and thus they are not absolute alternative to the supervised methods. This motivates us to look deeper into the supervised DL methods and investigate how they can be adopted intelligently for CD by minimizing the requirement of labeled training data. Towards this, in this work we show that geographically diverse training dataset can yield significant improvement over less diverse training datasets of the same size. We propose a simple confidence indicator for verifying the trustworthiness/confidence of supervised models trained with small labeled dataset. Moreover, we show that for the test cases where supervised CD model is found to be less confident/trustworthy, unsupervised methods often produce better result than the supervised ones.

elib-URL des Eintrags:https://elib.dlr.de/142165/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Trusting Small Training Dataset for Supervised Change Detection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Saha, SudipanTU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Biplab, BanerjeeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:2021
Erschienen in:International Geoscience and Remote Sensing Symposium (IGARSS)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/IGARSS47720.2021.9553818
Seitenbereich:Seiten 1-4
Verlag:IEEE
Status:veröffentlicht
Stichwörter:deep learning, change detection, small training set
Veranstaltungstitel:IGARSS 2021
Veranstaltungsort:Brussels / Virtual
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 Juli 2021
Veranstaltungsende:16 Juli 2021
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Bratasanu, Ion-Dragos
Hinterlegt am:10 Mai 2021 12:18
Letzte Änderung:24 Apr 2024 20:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.