Camero, Andrés and Wang, Hao and Alba, Enrique and Bäck, Thomas (2021) Bayesian neural architecture search using a training-free performance metric. Applied Soft Computing, 106, p. 107356. Elsevier. doi: 10.1016/j.asoc.2021.107356. ISSN 1568-4946.
PDF
- Postprint version (accepted manuscript)
772kB |
Official URL: http://dx.doi.org/10.1016/j.asoc.2021.107356
Abstract
Recurrent neural networks (RNNs) are a powerful approach for time series prediction. However, their performance is strongly affected by their architecture and hyperparameter settings. The architecture optimization of RNNs is a time-consuming task, where the search space is typically a mixture of real, integer and categorical values. To allow for shrinking and expanding the size of the network, the representation of architectures often has a variable length. In this paper, we propose to tackle the architecture optimization problem with a variant of the Bayesian Optimization (BO) algorithm. To reduce the evaluation time of candidate architectures the Mean Absolute Error Random Sampling (MRS), a training-free method to estimate the network performance, is adopted as the objective function for BO. Also, we propose three fixed-length encoding schemes to cope with the variable-length architecture representation. The result is a new perspective on accurate and efficient design of RNNs, that we validate on three problems. Our findings show that (1) the BO algorithm can explore different network architectures using the proposed encoding schemes and successfully designs well-performing architectures, and (2) the optimization time is significantly reduced by using MRS, without compromising the performance as compared to the architectures obtained from the actual training procedure.
Item URL in elib: | https://elib.dlr.de/141947/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Bayesian neural architecture search using a training-free performance metric | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | Applied Soft Computing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 106 | ||||||||||||||||||||
DOI: | 10.1016/j.asoc.2021.107356 | ||||||||||||||||||||
Page Range: | p. 107356 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 1568-4946 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Bayesian optimization; Recurrent neural network; Neural architecture search; Architecture optimization | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Camero, Dr Andres | ||||||||||||||||||||
Deposited On: | 26 Apr 2021 10:22 | ||||||||||||||||||||
Last Modified: | 24 May 2022 23:47 |
Repository Staff Only: item control page