Camero, Andrés und Wang, Hao und Alba, Enrique und Bäck, Thomas (2021) Bayesian neural architecture search using a training-free performance metric. Applied Soft Computing, 106, Seite 107356. Elsevier. doi: 10.1016/j.asoc.2021.107356. ISSN 1568-4946.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
772kB |
Offizielle URL: http://dx.doi.org/10.1016/j.asoc.2021.107356
Kurzfassung
Recurrent neural networks (RNNs) are a powerful approach for time series prediction. However, their performance is strongly affected by their architecture and hyperparameter settings. The architecture optimization of RNNs is a time-consuming task, where the search space is typically a mixture of real, integer and categorical values. To allow for shrinking and expanding the size of the network, the representation of architectures often has a variable length. In this paper, we propose to tackle the architecture optimization problem with a variant of the Bayesian Optimization (BO) algorithm. To reduce the evaluation time of candidate architectures the Mean Absolute Error Random Sampling (MRS), a training-free method to estimate the network performance, is adopted as the objective function for BO. Also, we propose three fixed-length encoding schemes to cope with the variable-length architecture representation. The result is a new perspective on accurate and efficient design of RNNs, that we validate on three problems. Our findings show that (1) the BO algorithm can explore different network architectures using the proposed encoding schemes and successfully designs well-performing architectures, and (2) the optimization time is significantly reduced by using MRS, without compromising the performance as compared to the architectures obtained from the actual training procedure.
elib-URL des Eintrags: | https://elib.dlr.de/141947/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Bayesian neural architecture search using a training-free performance metric | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | Applied Soft Computing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 106 | ||||||||||||||||||||
DOI: | 10.1016/j.asoc.2021.107356 | ||||||||||||||||||||
Seitenbereich: | Seite 107356 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 1568-4946 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Bayesian optimization; Recurrent neural network; Neural architecture search; Architecture optimization | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Camero, Dr Andres | ||||||||||||||||||||
Hinterlegt am: | 26 Apr 2021 10:22 | ||||||||||||||||||||
Letzte Änderung: | 24 Mai 2022 23:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags