Hua, Yuansheng and Mou, LiChao and Lin, Jianzhe and Heidler, Konrad and Zhu, Xiao Xiang (2021) Aerial Scene Understanding in The Wild: Multi-Scene Recognition via Prototype-based Memory Networks. ISPRS Journal of Photogrammetry and Remote Sensing, 177, pp. 89-102. Elsevier. doi: 10.1016/j.isprsjprs.2021.04.006. ISSN 0924-2716.
PDF
- Published version
16MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0924271621001015
Abstract
Aerial scene recognition is a fundamental visual task and has attracted an increasing research interest in the last few years. Most of current researches mainly deploy efforts to categorize an aerial image into one scene-level label, while in real-world scenarios, there often exist multiple scenes in a single image. Therefore, in this paper, we propose to take a step forward to a more practical and challenging task, namely multi-scene recog-nition in single images. Moreover, we note that manually yielding annotations for such a task is extraordinarily time- and labor-consuming. To address this, we propose a prototype-based memory network to recognize mul-tiple scenes in a single image by leveraging massive well-annotated single-scene images. The proposed network consists of three key components: 1) a prototype learning module, 2) a prototype-inhabiting external memory, and 3) a multi-head attention-based memory retrieval module. To be more specific, we first learn the prototype representation of each aerial scene from single-scene aerial image datasets and store it in an external memory. Afterwards, a multi-head attention-based memory retrieval module is devised to retrieve scene prototypes relevant to query multi-scene images for final predictions. Notably, only a limited number of annotated multi- scene images are needed in the training phase. To facilitate the progress of aerial scene recognition, we pro-duce a new multi-scene aerial image (MAI) dataset. Experimental results on variant dataset configurations demonstrate the effectiveness of our network. Our dataset and codes are publicly available.
Item URL in elib: | https://elib.dlr.de/141718/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Aerial Scene Understanding in The Wild: Multi-Scene Recognition via Prototype-based Memory Networks | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 177 | ||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2021.04.006 | ||||||||||||||||||||||||
Page Range: | pp. 89-102 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Convolutional neural network (CNN), Multi-scene recognition in single images, Memory network, Multi-scene aerial image dataset, Multi-head attention-based memory retrieval, Prototype learning | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Deposited On: | 14 Apr 2021 16:55 | ||||||||||||||||||||||||
Last Modified: | 28 Jun 2023 13:14 |
Repository Staff Only: item control page