Hua, Yuansheng und Mou, LiChao und Lin, Jianzhe und Heidler, Konrad und Zhu, Xiao Xiang (2021) Aerial Scene Understanding in The Wild: Multi-Scene Recognition via Prototype-based Memory Networks. ISPRS Journal of Photogrammetry and Remote Sensing, 177, Seiten 89-102. Elsevier. doi: 10.1016/j.isprsjprs.2021.04.006. ISSN 0924-2716.
PDF
- Verlagsversion (veröffentlichte Fassung)
16MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0924271621001015
Kurzfassung
Aerial scene recognition is a fundamental visual task and has attracted an increasing research interest in the last few years. Most of current researches mainly deploy efforts to categorize an aerial image into one scene-level label, while in real-world scenarios, there often exist multiple scenes in a single image. Therefore, in this paper, we propose to take a step forward to a more practical and challenging task, namely multi-scene recog-nition in single images. Moreover, we note that manually yielding annotations for such a task is extraordinarily time- and labor-consuming. To address this, we propose a prototype-based memory network to recognize mul-tiple scenes in a single image by leveraging massive well-annotated single-scene images. The proposed network consists of three key components: 1) a prototype learning module, 2) a prototype-inhabiting external memory, and 3) a multi-head attention-based memory retrieval module. To be more specific, we first learn the prototype representation of each aerial scene from single-scene aerial image datasets and store it in an external memory. Afterwards, a multi-head attention-based memory retrieval module is devised to retrieve scene prototypes relevant to query multi-scene images for final predictions. Notably, only a limited number of annotated multi- scene images are needed in the training phase. To facilitate the progress of aerial scene recognition, we pro-duce a new multi-scene aerial image (MAI) dataset. Experimental results on variant dataset configurations demonstrate the effectiveness of our network. Our dataset and codes are publicly available.
elib-URL des Eintrags: | https://elib.dlr.de/141718/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Aerial Scene Understanding in The Wild: Multi-Scene Recognition via Prototype-based Memory Networks | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 177 | ||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2021.04.006 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 89-102 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Convolutional neural network (CNN), Multi-scene recognition in single images, Memory network, Multi-scene aerial image dataset, Multi-head attention-based memory retrieval, Prototype learning | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 14 Apr 2021 16:55 | ||||||||||||||||||||||||
Letzte Änderung: | 28 Jun 2023 13:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags