Gerhardus, Andreas (2021) Causal discovery in time series with unobserved confounders. Joint IS-ENES3/ESiWACE2 Virtual Workshop on New Opportunities for ML and AI in Weather and Climate Modelling, 2021-03-16 - 2021-03-18, Online.
PDF
3MB |
Offizielle URL: https://portal.enes.org/community/announcements/causal_discovery_time_series_unobserved_confounders__Gerhardus.pdf
Kurzfassung
Understanding cause and effect relationships is an essential part of the scientific inquiry. There are, however, many circumstances in which the classical approach of controlled experimentation is not feasible. This is the case, for example, for most aspects of Earth's complex climate system. In the first part of the talk we will give a brief introduction into the modern framework of causal inference and causal discovery, which provides alternative methods for learning and reasoning about cause and effect from observational, i.e., non-experimental data. These methods have in recent years been gaining increasing attention from various research fields, for example from the climate and Earth system sciences as well as from the machine learning and artificial intelligence community. We will then present the novel LPCMCI causal discovery algorithm for learning the cause and effect relationships in multivariate time series. This algorithm is specifically adapted to several challenges that are prevalent in time series considered in the climate and Earth system sciences, for example strong autocorrelations, combinations of time lagged and contemporaneous causal relationships, as well as nonlinearities. It moreover allows for the existence of latent confounders, i.e., unobserved common causes, a complication that is faced in most realistic scenarios.
elib-URL des Eintrags: | https://elib.dlr.de/141641/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Causal discovery in time series with unobserved confounders | ||||||||
Autoren: |
| ||||||||
Datum: | 17 März 2021 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | causal discovery, time series analysis, causal inference, causality, machine learning, hidden variables | ||||||||
Veranstaltungstitel: | Joint IS-ENES3/ESiWACE2 Virtual Workshop on New Opportunities for ML and AI in Weather and Climate Modelling | ||||||||
Veranstaltungsort: | Online | ||||||||
Veranstaltungsart: | Workshop | ||||||||
Veranstaltungsbeginn: | 16 März 2021 | ||||||||
Veranstaltungsende: | 18 März 2021 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||
Standort: | Jena | ||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||
Hinterlegt von: | Gerhardus, Andreas | ||||||||
Hinterlegt am: | 12 Apr 2021 11:04 | ||||||||
Letzte Änderung: | 24 Apr 2024 20:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags