Causal discovery in time series with unobserved confounders

Andreas Gerhardus*
March 17, 2021
Joint IS-ENES3/ESiWACE2 Virtual Workshop on New Opportunities for ML and AI in Weather and Climate Modelling

*Climate Informatics Group
DLR-Institute of Data Science
Jena, Germany
Introduction
Motivation: Complex dynamics of the climate system

System of interest:

\[
X^1 \\
X^2 \\
X^3
\]

Goal:
Contribute to a better understanding of Earth’s complex weather and climate system.
Climate Informatics in general:
Use modern tools of machine learning, statistics, and data science to aid climate and Earth system sciences.
Climate Informatics in general:
Use modern tools of machine learning, statistics, and data science to aid climate and Earth system sciences.

Focus of the Climate Informatics Group @DLR Jena*:
- Development of methods
- Provisioning of open-source software implementations† for application by domain scientists
- Methods based on the modern causal inference framework

*www.climateinformaticslab.com
†https://github.com/jakobrunge/tigramite
Causal inference
Causal inference:

- Defines notions of *cause* and *effect* in a mathematical framework.
- Casts causal questions within this framework.
- Specifies assumptions and develops methods for answering these questions.
Causal inference and causal discovery

Causal inference:
- Defines notions of *cause* and *effect* in a mathematical framework.
- Casts causal questions within this framework.
- Specifies assumptions and develops methods for answering these questions.

Sub-field: Causal discovery
- Specifies assumptions and develops methods for learning cause and effect relationships from observational data.
On the notion of causation

Correlation is not causation:
Statistical dependencies in observational data do not by themselves imply causal relationships.
⇒ Need assumptions to connect stat. dependencies and causation
On the notion of causation

Correlation is not causation:
Statistical dependencies in observational data do not by themselves imply causal relationships.
⇒ Need assumptions to connect stat. dependencies and causation

Working definition of causality:
Variable X causes variable Y if an experimental manipulation that changes X (and only X) leads to a change of Y.
⇒ experimental mode of inferring causation
On the notion of causation

Correlation is not causation:
Statistical dependencies in observational data do not by themselves imply causal relationships.
⇒ Need assumptions to connect stat. dependencies and causation

Working definition of causality:
Variable X causes variable Y if an experimental manipulation that changes X (and only X) leads to a change of Y.
⇒ experimental mode of inferring causation

A theory of causality:
Framework of causal inference, largely developed and popularized by Judea Pearl, Peter Spirtes, Clark Glymour, Richard Scheines.

Textbooks: [Pearl, 2000, Spirtes et al., 2000, Peters et al., 2017].
Modelling causal relationships: Structural causal models

Intuition:
A structural causal model (SCM) specifies the functional causal relationships between a set of random variables.

Example (scientifically oversimplified, for illustration only):

Structural causal model:

\[
X_{\text{clouds}} := f_{\text{clouds}}(X_{\text{aerosols}}, X_{\text{env.facs.}}, \eta_{\text{clouds}})
\]

\[
X_{\text{aerosols}} := f_{\text{aerosols}}(X_{\text{env.facs.}}, \eta_{\text{aerosols}})
\]

\[
X_{\text{env.facs.}} := f_{\text{env.facs.}}(\eta_{\text{env.facs.}})
\]

Causal graph:
Specifies the *direct causes* of each variable.
Modelling causal relationships: Structural causal models

Intuition:
A structural causal model (SCM) specifies the functional causal relationships between a set of random variables.

Example (scientifically oversimplified, for illustration only):

Structural causal model:

\[
X_{\text{clouds}} := f_{\text{clouds}}(X_{\text{aerosols}}, X_{\text{env.facs.}}, \eta_{\text{clouds}})
\]

\[
X_{\text{aerosols}} := f_{\text{aerosols}}(X_{\text{env.facs.}}, \eta_{\text{aerosols}})
\]

\[
X_{\text{env.facs.}} := f_{\text{env.facs.}}(\eta_{\text{env.facs.}})
\]

Causal graph:
Specifies the *direct causes* of each variable.
Modelling causal relationships: Structural causal models

Intuition:
A structural causal model (SCM) specifies the functional causal relationships between a set of random variables.

Example (scientifically oversimplified, for illustration only):
Structural causal model:

\[
X_{\text{clouds}} := f_{\text{clouds}}(X_{\text{aerosols}}, X_{\text{env.facs.}}, \eta_{\text{clouds}})
\]
\[
X_{\text{aerosols}} := f_{\text{aerosols}}(X_{\text{env.facs.}}, \eta_{\text{aerosols}})
\]
\[
X_{\text{env.facs.}} := f_{\text{env.facs.}}(\eta_{\text{env.facs.}})
\]

Causal graph:
Specifies the \textit{direct causes} of each variable.
Modelling causal relationships: Structural causal models

Intuition:
A structural causal model (SCM) specifies the functional causal relationships between a set of random variables.

Example (scientifically oversimplified, for illustration only):

Structural causal model:

\[
\begin{align*}
X_{\text{clouds}} &= f_{\text{clouds}}(X_{\text{aerosols}}, X_{\text{env.facs.}}, \eta_{\text{clouds}}) \\
X_{\text{aerosols}} &= f_{\text{aerosols}}(X_{\text{env.facs.}}, \eta_{\text{aerosols}}) \\
X_{\text{env.facs.}} &= f_{\text{env.facs.}}(\eta_{\text{env.facs.}})
\end{align*}
\]

Causal graph:
Specifies the \textit{direct causes} of each variable.
Modelling causal relationships: Structural causal models

Intuition:
A structural causal model (SCM) specifies the functional causal relationships between a set of random variables.

Example (scientifically oversimplified, for illustration only):
Structural causal model:

\[X_{\text{clouds}} := f_{\text{clouds}}(X_{\text{aerosols}}, X_{\text{env. facs.}}, \eta_{\text{clouds}}) \]
\[X_{\text{aerosols}} := f_{\text{aerosols}}(X_{\text{env. facs.}}, \eta_{\text{aerosols}}) \]
\[X_{\text{env. facs.}} := f_{\text{env. facs.}}(\eta_{\text{env. facs.}}) \]

Causal graph:
Specifies the *direct causes* of each variable.
Modelling causal relationships: Structural causal models

Intuition:
A structural causal model (SCM) specifies the functional causal relationships between a set of random variables.

Example (scientifically oversimplified, for illustration only):

Structural causal model:

\[
X_{\text{clouds}} := f_{\text{clouds}}(X_{\text{aerosols}}, X_{\text{env}.\text{facs.}}, \eta_{\text{clouds}})
\]

\[
X_{\text{aerosols}} := f_{\text{aerosols}}(X_{\text{env}.\text{facs.}}, \eta_{\text{aerosols}})
\]

\[
X_{\text{env}.\text{facs.}} := f_{\text{env}.\text{facs.}}(\eta_{\text{env}.\text{facs.}})
\]

Causal graph:
Specifies the direct causes of each variable.
Why is causal knowledge important?

Scientific understanding:
Knowledge of cause and effect relationships is an essential part of the physical understanding of natural processes.
Why is causal knowledge important?

Scientific understanding:
Knowledge of cause and effect relationships is an essential part of the physical understanding of natural processes.

Robust prediction & forecasting:
Predictive systems consistent with the underlying causal structures are thought to be more robust under changing environmental conditions.
Why is causal knowledge important?

Scientific understanding:
Knowledge of cause and effect relationships is an essential part of the physical understanding of natural processes.

Robust prediction & forecasting:
Predictive systems consistent with the underlying causal structures are thought to be more robust under changing environmental conditions.

Attribution:
Questions of the type *Why did this event happen?* or *Is this due to climate change?* are of causal nature.
How to obtain causal knowledge?

1. **Experimentation:**
 Deliberately manipulate the system and observe the consequences.
How to obtain causal knowledge?

2. Simulation:
Experimentation inside a simulated version of the system.
3. Causal discovery:
Learn from observational data, given certain assumptions.
Causal discovery
Today’s approach to causal discovery:
Learn causal graph from statistical tests of (conditional) independencies*
in observational data

⇒ *Cl-based* causal discovery

*Conditional independence:
For random variables X, Y, and Z with distribution p: X and Y are conditionally independent Z, denoted as $X \perp \!\!\!\!\!\!\perp Y \mid Z$, if $p(x|y,z) = p(x|z)$ for all x, y, z.
Learning causal relationships from statistical independencies

Today’s approach to causal discovery:
Learn causal graph from statistical tests of (conditional) independencies* in observational data

⇒ CI-based causal discovery

Enabling assumptions:

1. Observational data is generated by a structural causal model (this true SCM is unknown)

2. No accidental independencies ⇒ more on this later

3. Optional: No unobserved confounders ⇒ more on this later

*Conditional independence:
For random variables X, Y, and Z with distribution p: X and Y are conditionally independent Z, denoted as $X \perp \perp Y \mid Z$, if $p(x|y, z) = p(x|z)$ for all x, y, z.
Causal graphs and (conditional) independencies

Fact:
The structure of the causal graph often has observable implications in terms of (conditional) independencies in the observed data.

Intuition:
- Statistical dependencies derive from causal relationships
- Conditioning can block and open the *flow of information*
Causal graphs and (conditional) independencies

Example:

- X influences Y: $X \perp \perp Y$
- Y influences Z: $Y \perp \perp Z$
- X influences Z through Y: $X \perp \perp Z$
Causal graphs and (conditional) independencies

Example:

- X influences Y: $X \not\perp\!\!\!\!\perp Y$
- Y influences Z: $Y \not\perp\!\!\!\!\perp Z$
- X influences Z through Y: $X \not\perp\!\!\!\!\perp Z$
- Knowing Y, X does not say more about Z: $X \perp\!\!\!\!\perp Z \mid Y$
Causal graphs and (conditional) independencies

Example:

- X influences Y: \(X \perp \perp Y \)
- Y influences Z: \(Y \perp \perp Z \)
- X influences Z through Y: \(X \perp \perp Z \)
- Knowing Y, X does not say more about Z: \(X \perp \perp Z \mid Y \)

General rule: d-separation
Graphical criterion to read off all (conditional) independencies implied by the structure of a given causal graph [Pearl, 1985, Pearl, 1988].

No accidental independencies:
There are no independencies beyond those implied by the causal graph.
CI-based causal discovery without unobserved confounders

Idea:

- Perform statistical tests of (conditional) independence in observational data
- Use test results to constrain the structure of the causal graph
CI-based causal discovery without unobserved confounders

Idea:

- Perform statistical tests of (conditional) independence in observational data
- Use test results to constrain the structure of the causal graph

Example 1:

Test decisions:

- $X \not\perp\!\!\!\!\perp Y$
- $Y \not\perp\!\!\!\!\perp Z$
- $X \not\perp\!\!\!\!\perp Z$

Possible causal graphs:
CI-based causal discovery without unobserved confounders

Idea:

- Perform statistical tests of (conditional) independence in observational data
- Use test results to constrain the structure of the causal graph

Example 2:

Test decisions:

- \(X \perp \!\!\!\!\!\!\!\!\perp Y\)
- \(Y \perp \!\!\!\!\!\!\!\!\perp Z\)
- \(X \perp \!\!\!\!\!\!\!\!\perp Z\)
- \(X \perp \!\!\!\!\!\!\!\!\!\perp Z | Y\)

Possible causal graphs:

observationally equivalent graphs
Unobserved confounders make causal discovery more difficult

Without unobserved confounders:

\[X \perp\!\!\!\!\!\!\perp Y \implies \]

\[X \perp\!\!\!\!\!\!\perp Y \]

or

\[X \perp\!\!\!\!\!\!\perp Y \]

\[X \leftrightarrow Y \]
Unobserved confounders make causal discovery more difficult

Without unobserved confounders:

\[X \perp \!
\perp \! Y \Rightarrow \]

With unobserved confounders:

\[X \perp \!
\perp \! Y \Rightarrow \]

\[X \perp \!
\perp \! L \perp \!
\perp \! Y \]
Unobserved confounders make causal discovery more difficult

Without unobserved confounders:

\[X \perp\!\!\!\!\!\!\perp Y \quad \Rightarrow \quad X \rightarrow Y \text{ or } X \leftarrow Y \]

With unobserved confounders:

\[X \perp\!\!\!\!\!\!\perp Y \quad \Rightarrow \quad X \rightarrow Y \text{ or } X \leftarrow Y \text{ or } \boxed{X \leftrightarrow Y} \]
Our research:
Causal discovery for time series
CI-based causal discovery for time series

Particularities:

- Variables are resolved in time
Particularities:

- Variables are resolved in time
- Autocorrelation
CI-based causal discovery for time series

Particularities:
- Variables are resolved in time
- Autocorrelation

Additional assumption:
- Stationary causal structure
CI-based causal discovery for time series

Particularities:
- Variables are resolved in time
- Autocorrelation

Additional assumption:
- Stationary causal structure
Additional statistical challenges:

- High dimensionality (resolving in time)
- Ill-calibrated statistical tests of independence (autocorrelation)
- Low detection power (autocorrelation)

⇒ standard algorithms often yield bad statistical performance
CI-based causal discovery for time series

Additional statistical challenges:

- High dimensionality (resolving in time)
- Ill-calibrated statistical tests of independence (autocorrelation)
- Low detection power (autocorrelation)

\[\Rightarrow \text{standard algorithms often yield bad statistical performance} \]

Our contribution:
Statistical problems alleviated by specialized algorithms\(^\dagger\) developed by the Climate Informatics Group @DLR Jena:

- PCMCI time-lagged links only & no unobserved confounders [Runge et al., 2019]
- PCMCI\(^\dagger\) no unobserved confounders [Runge, 2020]
- LPCMCI (Latent-PCMCI) [Gerhardus and Runge, 2020]

\(^\dagger\)available at: https://github.com/jakobrunge/tigramite
CI-based causal discovery for time series

Additional statistical challenges:

- High dimensionality (resolving in time)
- Ill-calibrated statistical tests of independence (autocorrelation)
- Low detection power (autocorrelation)

⇒ standard algorithms often yield bad statistical performance

Our contribution:

Statistical problems alleviated by specialized algorithms† developed by the Climate Informatics Group @DLR Jena:

- PCMCI time-lagged links only & no unobserved confounders [Runge et al., 2019]
- PCMCI† no unobserved confounders [Runge, 2020]
- LPCMCI (Latent-PCMCI) [Gerhardus and Runge, 2020]

† available at: https://github.com/jakobrunge/tigramite
LPCMCI: Latent-PCMCI

LPCMCI allows for:

- Contemporaneous links

(Also PCMCI does)
LPCMCI: Latent-PCMCI

LPCMCI allows for:

- Contemporaneous links
- Unobserved confounders

(also PCMCI\(^+\) does)
LPCMCI: Latent-PCMCI

LPCMCI allows for:

- Contemporaneous links
- Unobserved confounders

(also PCMCI+ does)
LPCMCI: Latent-PCMCI

LPCMCI allows for:

- Contemporaneous links
- Unobserved confounders

Basic idea:
More powerful CI tests by iterative learning of and subsequent conditioning on direct causes.

(also PCMCI\(^+\) does)
LPCMCI achieves strong gains in recall

Results of numerical experiments:
For autocorrelated continuous data LPCMCI shows strong gains in recall as compared to the current state of the art algorithm*

*the SVAR-FCI algorithm by [Malinsky and Spirtes, 2018]

$N = 5, T = 500, \tau_{\text{max}} = 5, \lambda = 0.3$
ParC corr, $\alpha = 0.01$
High-recall causal discovery for autocorrelated time series with latent confounders.

Causal Structure Learning from Multivariate Time Series in Settings with Unmeasured Confounding.
A Constraint - Propagation Approach to Probabilistic Reasoning.

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Pearl, J. (2000).
Causality: Models, Reasoning, and Inference.
Cambridge University Press, New York, NY, USA.

References

Backup
Conditioning sets are extended with known causal parents

\[X \rightarrow t - 3 \rightarrow t - 2 \rightarrow t - 1 \rightarrow t \]

\[Y \rightarrow t - 3 \rightarrow t - 2 \rightarrow t - 1 \rightarrow t \]

\[Z \rightarrow t - 3 \rightarrow t - 2 \rightarrow t - 1 \rightarrow t \]
Conditioning sets are extended with known causal parents

- For X: $t - 3$, $t - 2$, $t - 1$, t
- For Y: $t - 3$, $t - 2$, $t - 1$, t
- For Z: $t - 3$, $t - 2$, $t - 1$, t