Di, Hu and Mou, LiChao and Wang, Qingzhong and Gao, Junyu and Hua, Yuansheng and Dou, Dejing and Zhu, Xiao Xiang (2020) Ambient Sound Helps: Audiovisual Crowd Counting in Extreme Conditions. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1-4. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020-06-14 - 2020-06-19, Virtual event.
PDF
3MB |
Official URL: http://sightsound.org/papers/2020/Di_Hu_Does_Ambient_Sound_Help_Audiovisual_Crowd_Counting.pdf
Abstract
Visual crowd counting has been recently studied as a way to enable people counting in crowd scenes from images. Albeit successful, vision-based crowd counting approaches could fail to capture informative features in extreme conditions, e.g., imaging at night and occlusion. In this work, we introduce a novel task of audiovisual crowd counting, in which visual and auditory information are integrated for counting purposes. We collect a large-scale benchmark, named auDiovISual Crowd cOunting (DISCO) dataset, consisting of 1,935 images and the corresponding audio clips, and 170,270 annotated instances. In order to fuse the two modalities, we make use of a linear feature-wise fusion module that carries out an affine transformation on visual and auditory features. Finally, we conduct extensive experiments using the proposed dataset and approach. Experimental results show that introducing auditory information can benefit crowd counting under different illumination, noise, and occlusion conditions. The dataset and code will be released. Code and data have been made available
Item URL in elib: | https://elib.dlr.de/141044/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||
Title: | Ambient Sound Helps: Audiovisual Crowd Counting in Extreme Conditions | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | June 2020 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | audiovisual crowd, extreme conditions, ambient sound | ||||||||||||||||||||||||||||||||
Event Title: | IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||||||||||||||||||||||
Event Location: | Virtual event | ||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||
Event Start Date: | 14 June 2020 | ||||||||||||||||||||||||||||||||
Event End Date: | 19 June 2020 | ||||||||||||||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||||||
Deposited On: | 25 Feb 2021 11:54 | ||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:41 |
Repository Staff Only: item control page