Zhao, Wenzhi und Mou, Lichao und Chen, Jiage und Bo, Yanchen und Emery, William J. (2020) Incorporating Metric Learning and Adversarial Network for Seasonal Invariant Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 58 (4), Seiten 2720-2731. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2953879. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: http://dx.doi.org/10.1109/TGRS.2019.2953879
Kurzfassung
Change detection by comparing two bitemporal images is one of the most fundamental challenges for dynamic monitoring of the Earth surface. In this article, we propose a metric learning-based generative adversarial network (GAN) (MeGAN) to automatically explore seasonal invariant features for pseudochange suppressing and real change detection. To achieve this purpose, a seasonal invariant term is introduced to maximally suppress pseudochanges, whereas the MeGAN explores the transition patterns between adjacent images in a self-learning fashion. Different from the previous works on bitemporal imagery change detection, the proposed MeGAN have the following contributions: 1) it automatically explores change patterns from the complex bitemporal background without human intervention and 2) it aims to maximally exclude pseudochanges from the seasonal transition term and map out real changes efficiently. To our best knowledge, this is the first time we incorporate the seasonal transition term and GAN for change detection between bitemporal images. At last, to demonstrate the robustness of the proposed method, we included two data sets which are the Google Earth data and the Landsat data, for bitemporal change detection and evaluation. The experimental results indicated that the proposed method is able to perform change detection with precision can be as high as 81% and 88% for the Google Earth and Landsat data set, respectively.
elib-URL des Eintrags: | https://elib.dlr.de/141039/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Incorporating Metric Learning and Adversarial Network for Seasonal Invariant Change Detection | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | April 2020 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 58 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2019.2953879 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 2720-2731 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | change detection, metric learning, pseudochanges, satellite imagery | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 19 Feb 2021 19:55 | ||||||||||||||||||||||||
Letzte Änderung: | 01 Jun 2021 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags