Lin, Jianzhe and Mou, LiChao and Zhu, Xiao Xiang and Ji, Xiangyang and Wang, Z. Jane (2021) Attention-Aware Pseudo-3D Convolutional Neural Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 59 (9), pp. 7790-7802. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3038212. ISSN 0196-2892.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/9347797
Abstract
Convolutional neural networks (CNNs) have been applied for hyperspectral image classification recently. Among this class of deep models, 3-D CNN has been shown to be more effective by learning discriminative features from abundant spectral signatures and spatial contexts in hyperspectral imagery (HSI). However, by simply imposing 3-D CNN to HSI, a large amount of initial information might be lost in this CNN pipeline. The proposed attention-aware pseudo-3-D (AP3D) convolutional network for HSI classification is motivated by two observations. First, each dimension of the 3-D HSI is not equally important, different attention should be paid to different dimensions of the initial HSI image, especially in the first convolution operation. Second, intermediate representations of the 3-D input image at different stages in the 3-D CNN pipeline represent different levels of features and should not be neglected and abandoned. Instead, a 2-D matrix of scores for each feature map should be fed to the final softmax layer. Quantitative and qualitative results demonstrate that the proposed AP3D model outperforms the state-of-the-art HSI classification methods in agricultural and rural/urban data sets: Indian Pines, Pavia University, and Salinas Scene.
Item URL in elib: | https://elib.dlr.de/140912/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Attention-Aware Pseudo-3D Convolutional Neural Network for Hyperspectral Image Classification | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | September 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 59 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.3038212 | ||||||||||||||||||||||||
Page Range: | pp. 7790-7802 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Hyperspectral image, salient samples, super-vised classification, transfer learning | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Deposited On: | 12 Feb 2021 17:46 | ||||||||||||||||||||||||
Last Modified: | 06 Oct 2021 16:32 |
Repository Staff Only: item control page