Mou, LiChao und Hua, Yuansheng und Pu, Jin und Zhu, Xiao Xiang (2020) ERA: A Dataset and Deep Learning Benchmark for Event Recognition in Aerial Videos. IEEE Geoscience and Remote Sensing Magazine (GRSM), 8 (4), Seiten 125-133. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/MGRS.2020.3005751. ISSN 2168-6831.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
7MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9295448
Kurzfassung
As a result of the increasing use of unmanned aerial vehicles (UAVs), large volumes of aerial videos have been produced. It is unrealistic for humans to screen such big data and understand the contents. Hence, methodological research on the automatic understanding of UAV videos is of paramount importance (Figure 1). In this article, we introduce a novel problem of event recognition in unconstrained aerial videos in the remote sensing community and present the large-scale, human-annotated Event Recognition in Aerial Videos (ERA) data set, consisting of 2,864 videos, each with a label from 25 different classes corresponding to an event unfolding for five seconds. All these videos are collected from YouTube. The ERA data set is designed to have significant intra-class variation and interclass similarity and captures dynamic events in various circumstances and at dramatically various scales. Moreover, to offer a benchmark for this task, we extensively validate existing deep networks. We expect that the ERA data set will facilitate further progress in automatic aerial video comprehension. The data set and trained models can be downloaded from https://lcmou.github.io/ERA_Dataset/.
elib-URL des Eintrags: | https://elib.dlr.de/140908/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | ERA: A Dataset and Deep Learning Benchmark for Event Recognition in Aerial Videos | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Dezember 2020 | ||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Magazine (GRSM) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 8 | ||||||||||||||||||||
DOI: | 10.1109/MGRS.2020.3005751 | ||||||||||||||||||||
Seitenbereich: | Seiten 125-133 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2168-6831 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | ERA, deep learning, event recognition, aerial videos | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 12 Feb 2021 17:19 | ||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 12:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags