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ERA: A Dataset and Deep Learning Benchmark for
Event Recognition in Aerial Videos

Lichao Mou, Yuansheng Hua, Pu Jin, and Xiao Xiang Zhu, Senior Member, IEEE

Abstract—This is the pre-acceptance version. To read the final
version, please go to IEEE Geoscience and Remote Sensing
Magazine on IEEE Xplore. Along with the increasing use of
unmanned aerial vehicles (UAVs), large volumes of aerial videos
have been produced. It is unrealistic for humans to screen such
big data and understand their contents. Hence methodological
research on the automatic understanding of UAV videos is of
paramount importance. In this paper, we introduce a novel
problem of event recognition in unconstrained aerial videos
in the remote sensing community and present a large-scale,
human-annotated dataset, named ERA (Event Recognition in
Aerial videos), consisting of 2,864 videos each with a label
from 25 different classes corresponding to an event unfolding
5 seconds. All these videos are collected from YouTube. The
ERA dataset is designed to have a significant intra-class variation
and inter-class similarity and captures dynamic events in various
circumstances and at dramatically various scales. Moreover, to
offer a benchmark for this task, we extensively validate existing
deep networks. We expect that the ERA dataset will facilitate
further progress in automatic aerial video comprehension. The
dataset and trained models can be downloaded from https:
//lcmou.github.io/ERA Dataset/.

Index Terms—Aerial video dataset, unmanned aerial vehicle
(UAV), deep neural networks, event recognition, activity recog-
nition

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), a.k.a. drones, get
a bad reputation in the media. Most people associate

them with negative news, such as flight delays caused by
unauthorized drone activities and dangerous attack weapons.
However, recent advances in the field of remote sensing and
computer vision showcase that the future of UAVs will actually
be shaped by a wide range of practical applications [1]–[3]. To
name a few, in the aftermath of earthquakes and floods, UAVs
can be exploited to estimate damage, deliver assistance, and
locate victims. In addition to disaster relief, urban planners are
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Fig. 1. Temporal cue matters in event understanding from an aerial
perspective. What takes place in (a) and (b)? (c) or (d): Whose content depicts
a traffic congestion scene? It is difficult to answer these questions from still
images only, while temporal context provides an important visual cue. (See
videos and answers at https://lcmou.github.io/ERA Dataset/gif page/.)

capable of better understanding the environment of a city and
implementing data-driven improvements by the use of UAVs.
In precision agriculture, agricultural workers can make use
of UAVs to collect data, automate redundant procedures, and
generally maximize efficiency. In combination with geospatial
information, UAVs are now used to monitor and track animals
for the purpose of wildlife conservation.

Unlike satellites, UAVs are able to provide real-time, high-
resolution videos at a very low cost. They usually have real-
time streaming capabilities that enable quick decision-making.
Furthermore, UAVs can significantly reduce dependence on
weather conditions, e.g., clouds, and are available on a demand
offering higher flexibility to cope with various problems.

Yet the more UAVs there are in the skies, the more video
data they create. The Federal Aviation Administration (FAA)
estimates that in the US alone, there are more than 2 million

https://lcmou.github.io/ERA_Dataset/
https://lcmou.github.io/ERA_Dataset/
https://lcmou.github.io/ERA_Dataset/gif_page/
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Fig. 2. Overview of the ERA dataset. Overall, we have collected 2,864 labeled video snippets for 24 event classes and 1 normal class: post-earthquake,
flood, fire, landslide, mudslide, traffic collision, traffic congestion, harvesting, ploughing, constructing, police chase, conflict, baseball, basketball, boating,
cycling, running, soccer, swimming, car racing, party, concert, parade/protest, religious activity, and non-event. For each class, we show the first (left) and
last (right) frames of a video. Best viewed zoomed in color.

UAVs registered in 20191. And every day around 150 terabytes
of data can be easily produced by a small drone fleet2. The era
of big UAV data is here. It is unrealistic for humans to screen
these massive volumes of aerial videos and understand their
contents. Hence methodological research on the automatic
interpretation of such data is of paramount importance.

However, there is a paucity of literature on UAV video
analysis, which for the most part is concentrated on de-
tecting and tracking objects of interest [1]–[3], e.g., vehicle
and people, and understanding human activities in relatively
sanitized settings [4], [5]. Towards advancing aerial video
parsing, this paper introduces a novel task, event recognition in
unconstrained aerial videos, in the remote sensing community.
We present an Event Recognition in Aerial video (ERA)
dataset, a collection of 2,864 videos each with a label from 25
different classes corresponding to an event unfolding 5 seconds
(see Fig. 2). Here each video is clipped from a YouTube
long video, and its temporal length (5 seconds) corresponds to
the minimal duration of human short-term memory (5 to 20
seconds) [6]. This dataset enables training models for richly
understanding events in the wild from a broader, aerial view,
which is a crucial step towards building an automatic aerial
video comprehension system. In addition, to offer a benchmark
for this task, we extensively validate existing deep networks

1https://www.faa.gov/data research/aviation/aerospace forecasts/media/
Unmanned Aircraft Systems.pdf

2https://www.bloomberg.com/news/articles/2017-05-10/
airbus-joins-the-commercial-drone-data-wars

ERA Dataset
Traffic

Productive activity

Sport

Social activity

Disaster

Security

Non-event

fire

landslide

flood

mudslide

post-earthquake

traffic collision

traffic congestion

ploughing

constructing

harvesting

conflict

polie chase

cycling

running

boating

soccer

basketball

swimming

baseball

car racing

concert

parade/protest

party

religious activity

xxx

Fig. 3. Categorization of event classes in the ERA dataset. All event
categories are arranged in a two-level tree: with 25 leaf nodes connected to
7 nodes at the first level, i.e., disaster, traffic, productive activity, security,
sport, social activity, and non-event.

and report their results in two ways: single-frame classification
and video classification (see Section III).

II. THE ERA DATASET

This work aims to devise an aerial video dataset which
covers an extensive range of events. The ERA dataset is
designed to have a significant intra-class variation and inter-
class similarity and captures dynamic events in various cir-
cumstances and at dramatically various scales.

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/Unmanned_Aircraft_Systems.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/Unmanned_Aircraft_Systems.pdf
https://www.bloomberg.com/news/articles/2017-05-10/airbus-joins-the-commercial-drone-data-wars
https://www.bloomberg.com/news/articles/2017-05-10/airbus-joins-the-commercial-drone-data-wars
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Fig. 4. Sample distributions of all classes in the ERA. The red and blue bars represent the numbers of training and test samples in each category,
respectively, and green bars denote the total number of instances in each category.

A. Collection and Annotation

We start by creating our taxonomy (cf. Fig. 3) by building a
set of the 24 most commonly seen events from aerial scenes.
Moreover, to investigate if models can distinguish events from
normal videos, we set up a category called non-event, which
comprises videos not including specific events. The 25 classes
of our dataset can be found in Fig. 2.

In order to collect candidate videos for further labeling,
we search YouTube by parsing the metadata of videos and
crawling the search engine to create a collection of candidate
videos for each category. As a result, we collect 1,120 long
videos. Note that we set drone and UAV as keywords in order
to exclude videos not taken from UAVs. Then we download
all videos and send them to data annotators. Each annotator is
asked to localize 5-second video snippets that depict specific
events and cut them from long candidate videos.

There are three different annotators with payments who are
responsible for validating cut videos during the annotation
procedure. The first annotator generates primary annotations
to begin with. Then annotations from the first round are sent to
the second annotator for tune-ups. Finally, the third annotator
screen all generated 5-second videos and remove videos with
quite similar contents. Moreover, they are asked to double-
check whether these videos are taken by UAVs. Overall, the
total annotation time is around 290 hours.

B. Dataset Statistics

The goal of this work is to collect a large, diverse dataset
that can be used to train models for event recognition in
UAV videos. As we gather aerial videos from YouTube, the
largest video sharing platform in the world, we are capable
of including a large breadth of diversity, which is more
challenging than making use of self-collected data [4], [5].
In total, we have gathered and annotated 2,864 videos for 25
classes. Each video sequence is at 24 fps (frames per second),

in 5 seconds, and with a spatial size of 640×640 pixels. The
train/test split can be found in Fig. 4 and Section III-A. Fig. 4
exhibits the distribution of all classes. The red and blue bars
represent the numbers of training and test samples in each
category, respectively, and green bars denote the total number
of instances in each category.

To build a diverse dataset, we collect not only high quality
UAV videos but also ones acquired in extreme conditions.
By doing so, many challenging issues of event recognition in
overhead videos in real-world scenarios, e.g., low spatial reso-
lution, extreme illumination conditions, and bad weathers, can
be investigated. True aerial video parsing methods should be
capable of recognizing events under such extreme conditions.

C. Comparison with Other Aerial Data Understanding
Datasets

The first significant effort to build a standard dataset for
aerial video content understanding can be found in [4], in
which the authors make use of a GoPro-equipped drone to
collect video data at an altitude of 25 meters in a controlled
environment to build a dataset called UCLA Aerial Event
dataset. There are about 15 actors involved in each video. This
dataset includes two different sites at a park in Los Angeles,
USA and 104 event instances that present 12 classes related
to human-human and human-object interactions.

The authors of [5] propose Okutama-Action dataset for
understanding human actions from a bird’s eye view. Two
UAVs (DJI Phantom 4) with a flying altitude of 10-45 meters
above the ground are used to capture data, and all videos
included in this dataset are gathered at a baseball field in
Okutama, Japan. There are 12 actions included.

In [7], the authors build an aerial image dataset, termed
as AIDER, for emergency response applications. This dataset
only involves four disaster events, namely fire/smoke, flood,
collapsed building/rubble, and traffic accident, and a normal
case. There are totally 2,545 images collected from multiple
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TABLE I
COMPARISON TO EXISTING UAV DATA UNDERSTANDING DATASETS. WE OFFER VARIOUS COMPARISONS FOR EACH DATASET.

Dataset Type of Task Data Source Video # Classes # Samples Year
UCLA Aerial Event dataset [4] human-centric event recognition self-collected (actor staged) 3 12 104 2015

Okutama-Action dataset [5] human action detection self-collected (actor staged) 3 12 - 2017
AIDER dataset [7] disaster event recognition Internet 7 5 2,545 2019

ERA dataset (Ours) general event recognition YouTube 3 25 2,864 2020

sources, e.g., Google/Bing Images, websites of news agencies,
and YouTube.

Both the UCLA Aerial Event dataset [4] and the Okutama-
Action dataset [5] are small in todays terms for aerial video
understanding, and their data are gathered in well-controlled
environments and only focus on several human-centric events.
Besides, the AIDER dataset [7] is an image dataset with only 5
classes for disaster event classification. In contrast, our ERA
is a relatively large-scale UAV video content understanding
dataset, aiming to recognize generic dynamic events from
an aerial view. A comprehensive overview of these most
important comparable datasets and their features is given in
Table I.

D. Challenges

The proposed ERA dataset poses the following challenges:
• Although, to the best of our knowledge, the ERA dataset

is the largest dataset for event recognition in aerial videos
yet, its size is still relatively limited as compared to video
classification datasets in computer vision. Hence there
exists the small data challenge in the model training.

• The imbalanced distribution across different classes
(cf. Fig. 4) brings a challenge of learning unbiased models
on an imbalanced dataset.

• Unlike [4], [5], the existence of the non-event class in our
dataset requires that models are able to not only recognize
different events but also distinguish events from normal
videos.

• In this dataset, events happen in various environments
and are observed at different scales, which leads to a
significant intra-class variation and inter-class similarity.

III. EXPERIMENTS

A. Experimental Setup

Data and evaluation metric. As to the split of training and
test sets, we obey the following two rules: 1) videos cut from
the same long video are assigned to the same set, and 2) the
numbers of training and test videos per class are supposed to
be nearly equivalent. Because video snippets stemming from
the same long video usually share similar properties (e.g.,
background, illumination, and resolution), this split strategy is
able to evaluate the generalization ability of a model. We have
provided our training/test split in our dataset.. The statistics of
training and test samples are exhibited in Fig. 4. During the
training phase, 10% of training instances are randomly selected
as the validation set. To compare models comprehensively,
we make use of per-class precision and overall accuracy as
evaluation metrics.

B. Baselines for Event Classification

Single-frame classification models. We first describe
single-frame classification models where only a single video
frame is selected (the middle frame in this paper) from a video
as the input to networks. The used single-frame models3 are as
follows: VGG-16 [8], VGG19 [8], Inception-v3 [9], ResNet-
50 [10], ResNet-101 [10], ResNet-152 [10], MobileNet [11],
DenseNet-121 [12], DenseNet-169 [12], DenseNet-201 [12],
and NASNet-L [13].

Video classification models. These models take several
video frames as input, so that they can learn temporal informa-
tion from videos. We summarize the used video classification
models as follows.
• C3D [14]. In our experiments, we train two C3D4 net-

works with pre-trained weights on the Sport1M dataset
and the UCF101 dataset (see C3D† and C3D‡ in Ta-
ble III), respectively.

• P3D ResNet [15]. We train two 199-layer P3D ResNet5

(P3D-ResNet-199) models with pre-trained weights on the
Kinetics dataset and the Kinetics-600 dataset (see P3D†-
ResNet-199 and P3D‡-ResNet-199 in Table III), respectively.

• I3D [16]. To assess the performance of I3D on our
dataset, we train two I3D6 models whose backbones
are both Inception-v1 [17] (I3D-Inception-v1) with pre-trained
weights on the Kinetics dataset and Kinetics+ImageNet,
respectively (see I3D†-Inception-v1 and I3D‡-Inception-v1 in Ta-
ble III).

• TRN [18]. In our experiments, we train TRNs7 with
16 multi-scale relations and select the Inception archi-
tecture as the backbone. Notably, we experiment two
variants of the Inception architecture: BNInception [19]
and Inception-v3 [9]. We initialize the former with
weights pre-trained on the Something-Something V2
dataset (TRN†-BNInception in Table III) and the latter with
weights pre-trained on the Moments in Time dataset
(TRN‡-Inception-v3 in Table III).

C. Baseline Results

Quantitative results of single-frame classification models
and video classification models are reported in Table II and
Table III, respectively. As we can see, DenseNet-201 achieves
the best performance, an OA of 62.3%, in the single-frame
classification task and marginally surpasses the second best
model, Inception-v3, by 0.2%. For the video classification task,

3https://github.com/keras-team/keras-applications
4https://github.com/tqvinhcs/C3D-tensorflow
5https://github.com/zzy123abc/p3d
6https://github.com/LossNAN/I3D-Tensorflow
7https://github.com/metalbubble/TRN-pytorch

https://github.com/keras-team/keras-applications
https://github.com/tqvinhcs/C3D-tensorflow
https://github.com/zzy123abc/p3d
https://github.com/LossNAN/I3D-Tensorflow
https://github.com/metalbubble/TRN-pytorch
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TABLE II
PERFORMANCE OF SINGLE-FRAME CLASSIFICATION MODELS: WE SHOW THE PER-CLASS PRECISION AND OVERALL ACCURACY OF BASELINE

MODELS ON THE TEST SET. THE BEST PRECISION/ACCURACY IS SHOWN IN BOLD.
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VGG-16 46.3 59.1 53.6 38.8 56.1 30.8 76.2 62.7 65.4 69.0 70.0 44.4 61.0 56.2 69.4 39.6 33.3 87.5 62.0 32.0 73.5 56.7 47.8 64.6 30.4 51.9
VGG-19 45.5 56.4 70.2 48.1 47.1 33.3 50.0 57.1 58.1 65.2 80.9 7.4 66.7 55.9 66.7 35.8 57.1 67.3 55.6 26.7 53.3 54.4 43.6 50.0 31.1 49.7
Inception-v3 62.9 76.1 88.0 44.7 54.7 48.0 55.4 64.6 77.3 73.7 76.5 50.0 72.0 61.2 73.7 70.2 90.0 80.0 61.7 60.0 66.7 47.7 52.2 62.2 45.5 62.1
ResNet-50 65.5 69.8 77.4 40.0 51.9 40.6 50.0 77.4 72.9 63.8 68.6 62.5 83.3 52.2 71.4 77.4 28.6 73.5 54.3 50.0 61.5 49.4 46.0 48.9 38.9 57.3
ResNet-101 59.6 82.9 79.2 34.5 43.8 18.8 48.7 65.8 78.0 69.5 64.6 55.0 76.1 57.7 82.2 90.5 61.5 73.3 58.2 31.6 51.2 49.5 47.1 64.7 36.2 55.3
ResNet-152 67.3 68.2 78.8 45.2 46.4 38.9 58.5 61.9 75.6 58.0 59.3 57.1 79.5 56.9 77.8 63.4 75.0 74.4 56.1 30.8 61.9 44.7 48.6 52.8 37.0 56.1
MobileNet 72.0 70.8 78.0 57.5 61.0 43.6 52.6 66.2 66.7 67.2 70.6 50.0 74.5 59.7 76.4 54.7 72.0 64.8 52.9 56.2 65.0 44.4 54.5 61.5 52.5 61.3
DenseNet-121 58.6 71.4 82.8 54.5 51.6 38.1 58.2 71.1 78.0 70.2 73.5 48.0 85.0 68.4 86.7 65.3 57.1 75.4 61.7 52.9 68.3 52.3 66.7 47.8 43.3 61.7
DenseNet-169 70.0 82.9 71.9 45.2 40.2 36.7 59.5 71.6 87.2 80.4 76.6 53.8 91.4 65.0 67.7 76.9 63.6 75.0 63.2 57.1 59.1 60.0 55.4 60.9 39.7 60.6
DenseNet-201 69.9 80.4 84.5 52.2 48.1 43.2 62.3 71.6 85.4 71.2 77.1 47.1 87.8 63.6 79.6 69.8 47.8 65.0 58.0 43.8 61.0 60.9 55.0 60.8 42.1 62.3
NASNet-L 60.0 50.0 77.2 41.0 50.9 46.9 50.0 68.0 77.8 82.7 78.0 61.5 82.6 74.5 78.0 75.0 62.2 69.0 54.5 70.0 69.2 44.6 58.7 55.9 41.7 60.2
1 All networks are initialized with weights pre-trained on the ImageNet dataset and trained on the ERA dataset.

TABLE III
PERFORMANCE OF VIDEO CLASSIFICATION MODELS: WE SHOW THE PER-CLASS PRECISION AND OVERALL ACCURACY OF BASELINE MODELS ON THE

TEST SET. THE BEST PRECISION/ACCURACY IS SHOWN IN BOLD.
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C3D† 23.1 24.3 30.9 19.5 32.9 7.00 15.5 27.5 36.1 45.5 50.0 18.2 40.9 37.0 47.5 20.6 12.0 58.3 36.2 16.7 25.8 38.2 37.8 27.5 29.6 30.4
C3D‡ 27.9 56.5 32.7 10.2 23.9 8.30 38.5 42.3 31.1 40.0 51.9 11.1 45.7 48.9 41.9 13.6 9.30 41.9 38.2 18.2 17.4 32.0 28.1 35.8 28.5 31.1
P3D†-ResNet-199 43.6 65.9 66.7 35.5 48.7 20.0 37.8 77.4 70.8 62.0 81.6 22.2 66.7 63.1 55.4 35.6 35.3 76.2 57.4 40.0 54.5 37.5 38.7 47.8 37.4 50.7
P3D‡-ResNet-199 72.4 76.3 84.8 24.5 38.2 35.6 40.8 56.9 67.4 71.4 57.9 50.0 70.4 78.8 71.7 47.1 60.0 79.5 68.1 40.9 59.1 37.0 49.1 55.9 37.9 53.3
I3D†-Inception-v1 40.4 63.5 68.9 22.6 46.3 17.6 55.0 61.5 50.0 53.3 73.2 50.0 75.0 69.4 60.7 61.9 53.3 70.8 52.5 50.0 57.1 50.7 40.3 49.0 35.8 51.3
I3D‡-Inception-v1 60.0 68.1 65.7 29.0 60.4 51.5 52.2 67.1 66.7 54.2 64.8 57.9 85.0 61.9 86.4 75.0 44.4 77.6 64.1 65.2 53.7 50.0 47.8 65.1 43.0 58.5
TRN†-BNInception 84.8 71.4 82.5 51.2 50.0 46.8 66.7 68.1 77.4 52.4 70.5 75.0 64.5 67.7 84.0 56.1 55.2 83.3 72.9 61.1 62.0 48.9 44.6 62.8 51.1 62.0
TRN‡-Inception-v3 69.2 87.8 88.9 65.8 60.0 44.1 58.3 78.1 90.7 70.8 73.3 28.6 83.3 72.7 73.7 60.0 66.7 73.6 70.6 63.6 65.1 47.7 42.7 65.1 47.9 64.3

TRN‡-Inception-v3 performs superiorly and gains an OA of 64.3%.
By comparing Table II and Table III, it is interesting to observe
that the best-performed video classification model obtains the
highest OA, which demonstrates the significance of exploiting
temporal cues in event recognition from aerial videos.

We further show some predictions of the best two single-
frame classification network architectures (i.e., Inception-v3
and DenseNet-201) and the best two video classification
network architectures (i.e., I3D‡-Inception-v1 and TRN‡-Inception-v3) in
Fig. 5. As shown in the top left two examples, frames/videos
with discriminative event-relevant characteristics, such as con-
gested traffic states on a highway and smoke rising from a
residential area, can be accurately recognized by all baselines
with high confidence scores. Besides, high-scoring predictions
of TRN in identifying ploughing and parade/protest illustrate
that efficiently exploiting temporal information helps in distin-
guishing events of minor inter-class variances. Moreover, we
observe that extreme conditions might disturb predictions, for
instance, frames/videos of night and snow scenes (see Fig. 5)
tend to be misclassified.

Despite successes achieved by these baselines, there are
still some challenging cases as shown in Fig. 5. A common

characteristic shared by these examples is that event-relevant
attributes such as human actions are not easy to recognize, and
this results in failures to identify these events. To summarize,
event recognition in aerial videos is still a big challenge and
may benefit from better recognizing discriminative attributes
as well as exploiting temporal cues. More examples are at
https://lcmou.github.io/ERA Dataset/.

IV. CONCLUSION

We present ERA, a dataset for comprehensively recognizing
events in the wild form UAV videos. Organized in a rich
semantic taxonomy, the ERA dataset covers a wide range of
events involving diverse environments and scales. We report
results of plenty of deep networks in two ways: single-frame
classification and video classification. The experimental results
show that this is a hard task for the remote sensing field, and
the proposed dataset serves as a new challenge to develop
models that can understand what happens on the planet from
an aerial view. Looking into the future, our dataset has the
potential of being applied to more tasks with existing or new
annotations, e.g., temporal event localization in long videos,
multi-attribute learning for aerial video understanding, and

https://lcmou.github.io/ERA_Dataset/
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GT: fire
InceptionV3: 1. fire (0.97); 2. non-event (0.01); 3. flood (0.01)
DenseNet201: 1. fire (0.99); 2. non-event (0.00); 3. constructing (0.00)
I3D: 1. fire (0.35); 2. constructing (0.26); 3. non-event (0.15)
TRN: 1. fire (0.99); 2. conflict (0.01); 3. concert (0.00)

GT: post-earthquake
InceptionV3: 1. post-earthquake (0.99); 2. mudslide (0.01); 3. landslide (0.00)
DenseNet201: 1. mudslide (0.65); 2. post-earthquake (0.32); 3. constructing (0.01)
I3D: 1. non-event (0.50); 2. mudslide (0.22); 3. landslide (0.18)
TRN: 1. post-earthquake (1.00); 2. landslide (0.00); 3. mudslide (0.00)

GT: conflict
InceptionV3: 1. fire (0.79); 2. religious activity (0.09); 3. mudslide (0.05)
DenseNet201: 1. fire (0.94); 2. traffic collision (0.02); 3. conflict (0.01)
I3D: 1. conflict (0.43); 2. post-earthquake (0.22); 3. parade/protest (0.20)
TRN: 1. conflict (0.99); 2. parade/protest (0.01); 3. post-earthquake (0.00)

GT: ploughing
InceptionV3: 1. harvesting (1.00); 2. ploughing (0.00); 3. mudslide (0.00)
DenseNet201: 1. harvesting (0.65); 2. ploughing (0.35); 3. post-earthquake (0.00)
I3D: 1. ploughing (0.97); 2. harvesting (0.03); 3. cycling (0.00)
TRN: 1. ploughing (1.00); 2. harvesting (0.00); 3. cycling (0.00)

GT: fire
InceptionV3: 1. concert (1.00); 2. fire (0.00); 3. non-event (0.00)
DenseNet201: 1. concert (0.56); 2. fire (0.44); 3. non-event (0.00)
I3D: 1. fire (1.00); 2. concert (0.00); 3. conflict (0.00)
TRN: 1. concert (0.99); 2. fire (0.01); 3. religious activity (0.00)

GT: parade/protest
InceptionV3: 1. party (0.53); 2. basketball (0.26); 3. non-event (0.11)
DenseNet201: 1. basketball (1.00); 2. party (0.00); 3. non-event (0.00)
I3D: 1. basketball (0.68); 2. party (0.12); 3. flood (0.10)
TRN: 1. parade/protest (1.00); 2. non-event (0.00); 3. concert (0.00)

GT: traffic congestion
InceptionV3: 1. traffic congestion (0.98); 2. non-event (0.02); 3. running (0.00)
DenseNet201: 1. traffic congestion (1.00); 2. non-event (0.00); 3. party (0.00)
I3D: 1. traffic congestion (1.00); 2. non-event (0.00); 3. traffic collision (0.00)
TRN: 1. traffic congestion (1.00); 2. cycling (0.00); 3. parade/protest (0.00)

GT: boating
Inception-v3: 1. swimming (0.74); 2. boating (0.25); 3. party (0.01)
DenseNet-201: 1. swimming (0.99); 2. boating (0.01); 3. party (0.00)
I3D: 1. swimming (1.00); 2. party (0.00); 3. boating (0.00)
TRN: 1. swimming (1.00); 2. boating (0.00); 3. party (0.00)

GT: running
Inception-v3: 1. concert (0.99); 2. religious activity (0.00); 3. parade/protest (0.00)
DenseNet-201: 1. non-event (0.74); 2. concert (0.14); 3. parade/protest (0.04)
I3D: 1. concert (0.65); 2. religious activity (0.24); 3. parade/protest (0.05)
TRN: 1. concert (0.96); 2. religious activity (0.04); 3. parade/protest (0.00)

Fig. 5. Examples of event recognition results on the ERA dataset. We show the best two single-frame classification network architectures (i.e., Inception-v3
and DenseNet-201) and the best two video classification network architectures (i.e., I3D‡-Inception-v1 and TRN‡-Inception-v3). The ground truth label and top 3
predictions of each model are reported. For each example, we show the first (left) and last (right) frames. Best viewed zoomed in color.

video retrieval. Furthermore, in addition to the remote sensing
community, we note that this dataset could also contribute to
the computer vision community.
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