Saha, Sudipan and Mou, LiChao and Qiu, Chunping and Zhu, Xiao Xiang and Bovolo, Francesca and Bruzzone, Lorenzo (2020) Unsupervised deep joint segmentation of multi-temporal high resolution images. IEEE Transactions on Geoscience and Remote Sensing, 58 (12), pp. 8780-8792. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.2990640. ISSN 0196-2892.
PDF
- Published version
12MB |
Official URL: https://ieeexplore.ieee.org/document/9091105
Abstract
High/very-high-resolution (HR/VHR) multitemporal images are important in remote sensing to monitor the dynamics of the Earth's surface. Unsupervised object-based image analysis provides an effective solution to analyze such images. Image semantic segmentation assigns pixel labels from meaningful object groups and has been extensively studied in the context of single-image analysis, however not explored for multitemporal one. In this article, we propose to extend supervised semantic segmentation to the unsupervised joint semantic segmentation of multitemporal images. We propose a novel method that processes multitemporal images by separately feeding to a deep network comprising of trainable convolutional layers. The training process does not involve any external label, and segmentation labels are obtained from the argmax classification of the final layer. A novel loss function is used to detect object segments from individual images as well as establish a correspondence between distinct multitemporal segments. Multitemporal semantic labels and weights of the trainable layers are jointly optimized in iterations. We tested the method on three different HR/VHR data sets from Munich, Paris, and Trento, which shows the method to be effective. We further extended the proposed joint segmentation method for change detection (CD) and tested on a VHR multisensor data set from Trento.
Item URL in elib: | https://elib.dlr.de/140907/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Unsupervised deep joint segmentation of multi-temporal high resolution images | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | December 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 58 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.2990640 | ||||||||||||||||||||||||||||
Page Range: | pp. 8780-8792 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | time series, multi-temporal, high resolution satellite images, unsupervised deep joint segmentation | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||
Deposited On: | 12 Feb 2021 17:01 | ||||||||||||||||||||||||||||
Last Modified: | 01 Mar 2022 03:00 |
Repository Staff Only: item control page