Sica, Francescopaolo and Calvanese, Francesco and Scarpa, Giuseppe and Rizzoli, Paola (2020) A CNN-Based Coherence-Driven Approach for InSAR Phase Unwrapping. IEEE Geoscience and Remote Sensing Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2020.3029565. ISSN 1545-598X.
PDF
- Published version
4MB |
Abstract
Phase unwrapping (PU) is among the most critical tasks in synthetic aperture radar (SAR) interferometry (InSAR). Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network (CNN) models. In particular, by exploiting a popular deep-learning architecture, we introduce the interferometric coherence as an input feature and analyze the performance increase against classical methods. For the network training, we generate a variegated data set by introducing a controlled number of phase residues, and considering both synthetic and real InSAR data. Eventually, we compare the proposed method to state-of-the-art algorithms on synthetic and real InSAR data taken from the TanDEM-X mission, obtaining encouraging results.
Item URL in elib: | https://elib.dlr.de/140351/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | A CNN-Based Coherence-Driven Approach for InSAR Phase Unwrapping | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 21 October 2020 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/lgrs.2020.3029565 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Deep Learning, SAR interferometry, Phase Unwrapping | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - SAR methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute Microwaves and Radar Institute > SAR Technology Microwaves and Radar Institute > Spaceborne SAR Systems | ||||||||||||||||||||
Deposited By: | Sica, Dr. Francescopaolo | ||||||||||||||||||||
Deposited On: | 12 Jan 2021 17:48 | ||||||||||||||||||||
Last Modified: | 24 Oct 2023 12:46 |
Repository Staff Only: item control page