Sica, Francescopaolo und Calvanese, Francesco und Scarpa, Giuseppe und Rizzoli, Paola (2020) A CNN-Based Coherence-Driven Approach for InSAR Phase Unwrapping. IEEE Geoscience and Remote Sensing Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2020.3029565. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Kurzfassung
Phase unwrapping (PU) is among the most critical tasks in synthetic aperture radar (SAR) interferometry (InSAR). Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network (CNN) models. In particular, by exploiting a popular deep-learning architecture, we introduce the interferometric coherence as an input feature and analyze the performance increase against classical methods. For the network training, we generate a variegated data set by introducing a controlled number of phase residues, and considering both synthetic and real InSAR data. Eventually, we compare the proposed method to state-of-the-art algorithms on synthetic and real InSAR data taken from the TanDEM-X mission, obtaining encouraging results.
elib-URL des Eintrags: | https://elib.dlr.de/140351/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | A CNN-Based Coherence-Driven Approach for InSAR Phase Unwrapping | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 21 Oktober 2020 | ||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/lgrs.2020.3029565 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep Learning, SAR interferometry, Phase Unwrapping | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme | ||||||||||||||||||||
Hinterlegt von: | Sica, Dr. Francescopaolo | ||||||||||||||||||||
Hinterlegt am: | 12 Jan 2021 17:48 | ||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 12:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags