Sica, Francescopaolo and Gobbi, Giorgia and Rizzoli, Paola and Bruzzone, Lorenzo (2020) Phi-Net: Deep Residual Learning for InSAR Parameters Estimation. IEEE Transactions on Geoscience and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3020427. ISSN 0196-2892.
PDF
- Published version
45MB |
Abstract
Nowadays, deep learning (DL) finds application in a large number of scientific fields, among which the estimation and the enhancement of signals disrupted by the noise of different natures. In this article, we address the problem of the estimation of the interferometric parameters from synthetic aperture radar (SAR) data. In particular, we combine convolutional neural networks together with the concept of residual learning to define a novel architecture, named Phi-Net, for the joint estimation of the interferometric phase and coherence. Phi-Net is trained using synthetic data obtained by an innovative strategy based on the theoretical modeling of the physics behind the SAR acquisition principle. This strategy allows the network to generalize the estimation problem with respect to: 1) different noise levels; 2) the nature of the imaged target on the ground; and 3) the acquisition geometry. We then analyze the Phi-Net performance on an independent data set of synthesized interferometric data, as well as on real InSAR data from the TanDEM-X and Sentinel-1 missions. The proposed architecture provides better results with respect to state-of-the-art InSAR algorithms on both synthetic and real test data. Finally, we perform an application-oriented study on the retrieval of the topographic information, which shows that Phi-Net is a strong candidate for the generation of high-quality digital elevation models at a resolution close to the one of the original single-look complex data.
Item URL in elib: | https://elib.dlr.de/140350/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Phi-Net: Deep Residual Learning for InSAR Parameters Estimation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 15 September 2020 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.3020427 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Deep Learning, Residual Learning, SAR Interferometry, estimation | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - SAR methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute | ||||||||||||||||||||
Deposited By: | Sica, Dr. Francescopaolo | ||||||||||||||||||||
Deposited On: | 12 Jan 2021 17:47 | ||||||||||||||||||||
Last Modified: | 24 Oct 2023 13:47 |
Repository Staff Only: item control page