Fellner, Lea und Kraus, Marian und Walter, Arne und Duschek, Frank und Bocklitz, Thomas und Gabbarini, Valentina und Rossi, Riccardo und Puleio, Alessandro und Malizia, Andrea und Gaudio, Pasquale (2021) Determination of composition of mixed biological samples using laser-induced fluorescence and combined classification/regression models. European Physical Journal Plus. Springer. doi: 10.1140/epjp/s13360-021-02019-1. ISSN 2190-5444.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
821kB | |
PDF
- Verlagsversion (veröffentlichte Fassung)
815kB |
Kurzfassung
Abstract Laser-induced fluorescence (LIF) provides the ability to distinguish organic materials by a fast and distant in situ analysis. When detecting the substances directly in the environment, e.g. in an aerosol cloud or on surfaces, additional fluorescence signals of other fluorophores occurring in the surrounding are expected to mix with the desired signal. We approached this problem with a simplified experimental design for an evaluation of classification algorithms. An upcoming question for enhanced identification capabilities is the case of mixed samples providing different signals from different fluorophores. For this work, mixtures of up to four common fluorophores (NADH, FAD, tryptophan, and tyrosine) were measured by a dual wavelength setup and spectrally analyzed. Classification and regression are conducted with neural networks and show an excellent performance in predicting the ratios of the selected ingredients.
elib-URL des Eintrags: | https://elib.dlr.de/139865/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Determination of composition of mixed biological samples using laser-induced fluorescence and combined classification/regression models | ||||||||
Autoren: | |||||||||
Datum: | 9 November 2021 | ||||||||
Erschienen in: | European Physical Journal Plus | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
DOI: | 10.1140/epjp/s13360-021-02019-1 | ||||||||
Herausgeber: |
| ||||||||
Verlag: | Springer | ||||||||
ISSN: | 2190-5444 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | laser-induced fluorescence; LIF; classification and regression models; machine learning algorithms; neural networks; biological fluorophores; mixtures | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Luftfahrt | ||||||||
HGF - Programmthema: | Starrflügler (alt) | ||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||
DLR - Forschungsgebiet: | L AR - Starrflüglerforschung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Laserforschung und -technologie (alt), L - Laserforschung und Technologie (alt) | ||||||||
Standort: | Lampoldshausen | ||||||||
Institute & Einrichtungen: | Institut für Technische Physik > Atmosphärische Propagation und Wirkung Institut für Technische Physik | ||||||||
Hinterlegt von: | Kraus, Marian | ||||||||
Hinterlegt am: | 13 Jan 2021 12:06 | ||||||||
Letzte Änderung: | 14 Jun 2022 13:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags