Mou, LiChao and Hua, Yuansheng and Jin, Pu and Zhu, Xiao Xiang (2020) Global Message Passing in Networks via Task-driven Random Walks for Semantic Segmentation of Remote Sensing Images. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2-2020, pp. 533-540. ISPRS. ISPRS 2020, 2020-08-31 - 2020-09-02, Nice, France. doi: 10.5194/isprs-annals-V-2-2020-533-2020. ISSN 2194-9042.
PDF
7MB |
Official URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2020/533/2020/
Abstract
The capability of globally modeling and reasoning about relations between image regions is crucial for complex scene understanding tasks such as semantic segmentation. Most current semantic segmentation methods fall back on deep convolutional neural networks (CNNs), while their use of convolutions with local receptive fields is typically inefficient at capturing long-range dependencies. Recent works on self-attention mechanisms and relational reasoning networks seek to address this issue by learning pairwise relations between each two entities and have showcased promising results. But such approaches have heavy computational and memory overheads, which is computationally infeasible for dense prediction tasks, particularly on large size images, i.e., aerial imagery. In this work, we propose an efficient method for global context modeling in which at each position, a sparse set of features, instead of all features, over the spatial domain are adaptively sampled and aggregated. We further devise a highly efficient instantiation of the proposed method, namely learning RANdom walK samplIng aNd feature aGgregation (RANKING). The proposed module is lightweight and general, which can be used in a plug-and-play fashion with the existing fully convolutional neural network (FCN) framework. To evaluate RANKING-equipped networks, we conduct experiments on two aerial scene parsing datasets, and the networks can achieve competitive results at significant low costs in terms of the computational and memory.
Item URL in elib: | https://elib.dlr.de/139791/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Global Message Passing in Networks via Task-driven Random Walks for Semantic Segmentation of Remote Sensing Images | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||
Journal or Publication Title: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 2-2020 | ||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-2-2020-533-2020 | ||||||||||||||||||||
Page Range: | pp. 533-540 | ||||||||||||||||||||
Publisher: | ISPRS | ||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | deep learning, global message passing, random walking, semantic segmentation, remote sensing | ||||||||||||||||||||
Event Title: | ISPRS 2020 | ||||||||||||||||||||
Event Location: | Nice, France | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 31 August 2020 | ||||||||||||||||||||
Event End Date: | 2 September 2020 | ||||||||||||||||||||
Organizer: | ISPRS | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Deposited On: | 18 Dec 2020 13:34 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page