Mou, LiChao und Hua, Yuansheng und Jin, Pu und Zhu, Xiao Xiang (2020) Global Message Passing in Networks via Task-driven Random Walks for Semantic Segmentation of Remote Sensing Images. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2-2020, Seiten 533-540. ISPRS. ISPRS 2020, 2020-08-31 - 2020-09-02, Nice, France. doi: 10.5194/isprs-annals-V-2-2020-533-2020. ISSN 2194-9042.
PDF
7MB |
Offizielle URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2020/533/2020/
Kurzfassung
The capability of globally modeling and reasoning about relations between image regions is crucial for complex scene understanding tasks such as semantic segmentation. Most current semantic segmentation methods fall back on deep convolutional neural networks (CNNs), while their use of convolutions with local receptive fields is typically inefficient at capturing long-range dependencies. Recent works on self-attention mechanisms and relational reasoning networks seek to address this issue by learning pairwise relations between each two entities and have showcased promising results. But such approaches have heavy computational and memory overheads, which is computationally infeasible for dense prediction tasks, particularly on large size images, i.e., aerial imagery. In this work, we propose an efficient method for global context modeling in which at each position, a sparse set of features, instead of all features, over the spatial domain are adaptively sampled and aggregated. We further devise a highly efficient instantiation of the proposed method, namely learning RANdom walK samplIng aNd feature aGgregation (RANKING). The proposed module is lightweight and general, which can be used in a plug-and-play fashion with the existing fully convolutional neural network (FCN) framework. To evaluate RANKING-equipped networks, we conduct experiments on two aerial scene parsing datasets, and the networks can achieve competitive results at significant low costs in terms of the computational and memory.
elib-URL des Eintrags: | https://elib.dlr.de/139791/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Global Message Passing in Networks via Task-driven Random Walks for Semantic Segmentation of Remote Sensing Images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 2-2020 | ||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-2-2020-533-2020 | ||||||||||||||||||||
Seitenbereich: | Seiten 533-540 | ||||||||||||||||||||
Verlag: | ISPRS | ||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | deep learning, global message passing, random walking, semantic segmentation, remote sensing | ||||||||||||||||||||
Veranstaltungstitel: | ISPRS 2020 | ||||||||||||||||||||
Veranstaltungsort: | Nice, France | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||||||
Veranstaltungsende: | 2 September 2020 | ||||||||||||||||||||
Veranstalter : | ISPRS | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 18 Dez 2020 13:34 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags