elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

AI and Data Science in Earth Observation

Zhu, Xiao Xiang (2020) AI and Data Science in Earth Observation. Planet Explore, 2020-10-13, Online.

Full text not available from this repository.

Abstract

Geoinformation derived from Earth observation satellite data is indispensable for many scientific, governmental and planning tasks. Geoscience, atmospheric sciences, cartography, resource management, civil security, disaster relief, as well as planning and decision support are just a few examples. Furthermore, Earth observation has irreversibly arrived in the Big Data era, e.g. with ESA's Sentinel satellites and with the blooming of NewSpace companies. This requires not only new technological approaches to manage and process large amounts of data, but also new analysis methods. Here, methods of data science and artificial intelligence (AI), such as machine learning, become indispensable. In this talk, explorative signal processing and machine learning algorithms, such as compressive sensing and deep learning, will be shown to significantly improve information retrieval from remote sensing data, and consequently lead to breakthroughs in geoscientific and environmental research. In particular, by the fusion of petabytes of EO data from satellite to social media, fermented with tailored and sophisticated data science algorithms, it is now possible to tackle unprecedented, large-scale, influential challenges, such as the mapping of global urbanization one of the most important megatrends of global changes.

Item URL in elib:https://elib.dlr.de/139647/
Document Type:Conference or Workshop Item (Speech)
Title:AI and Data Science in Earth Observation
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Zhu, Xiao XiangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2020
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:AI4EO, Data Science, Earth Observation
Event Title:Planet Explore
Event Location:Online
Event Type:Workshop
Event Date:13 October 2020
Organizer:Planet
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Remote Sensing and Geo Research
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Rösel, Dr. Anja
Deposited On:17 Dec 2020 18:29
Last Modified:24 Apr 2024 20:40

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.