Qiu, Zeju and Eiband, Thomas and Li, Shile and Lee, Dongheui (2020) Hand Pose-based Task Learning from Visual Observations with Semantic Skill Extraction. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 596-603. IEEE. 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2020-08-31 - 2020-09-04, Naples, Italy. doi: 10.1109/RO-MAN47096.2020.9223479. ISBN 978-1-7281-6075-7. ISSN 1944-9437.
![]() |
PDF
2MB |
Official URL: https://ieeexplore.ieee.org/document/9223479
Abstract
Learning from Demonstrations is a promising technique to transfer task knowledge from a user to a robot. We propose a framework for task programming by observing the human hand pose and object locations solely with a depth camera. By extracting skills from the demonstrations, we are able to represent what the robot has learned, generalize to unseen object locations and optimize the robotic execution instead of replaying a non-optimal behavior. A two-staged segmentation algorithm that employs skill template matching via Hidden Markov Models has been developed to extract motion primitives from the demonstration and gives them semantic meanings. In this way, the transfer of task knowledge has been improved from a simple replay of the demonstration towards a semantically annotated, optimized and generalized execution. We evaluated the extraction of a set of skills in simulation and prove that the task execution can be optimized by such means.
Item URL in elib: | https://elib.dlr.de/139470/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Hand Pose-based Task Learning from Visual Observations with Semantic Skill Extraction | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 31 August 2020 | ||||||||||||||||||||
Journal or Publication Title: | 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/RO-MAN47096.2020.9223479 | ||||||||||||||||||||
Page Range: | pp. 596-603 | ||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||
ISSN: | 1944-9437 | ||||||||||||||||||||
ISBN: | 978-1-7281-6075-7 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Learning from Demonstration, Skill learning, hand pose estimation, gesture recognition, task level programming, Programming by Demonstration, hand tracking, segmentation, template matching, dynamic movement primitives | ||||||||||||||||||||
Event Title: | 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) | ||||||||||||||||||||
Event Location: | Naples, Italy | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 31 August 2020 | ||||||||||||||||||||
Event End Date: | 4 September 2020 | ||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | Vorhaben Autonome, lernende Roboter (old), Vorhaben Intuitive Mensch-Roboter Schnittstelle (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||||||
Deposited By: | Eiband, Thomas | ||||||||||||||||||||
Deposited On: | 09 Dec 2020 22:45 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page