Qiu, Zeju und Eiband, Thomas und Li, Shile und Lee, Dongheui (2020) Hand Pose-based Task Learning from Visual Observations with Semantic Skill Extraction. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, Seiten 596-603. IEEE. 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2020-08-31 - 2020-09-04, Naples, Italy. doi: 10.1109/RO-MAN47096.2020.9223479. ISBN 978-1-7281-6075-7. ISSN 1944-9437.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9223479
Kurzfassung
Learning from Demonstrations is a promising technique to transfer task knowledge from a user to a robot. We propose a framework for task programming by observing the human hand pose and object locations solely with a depth camera. By extracting skills from the demonstrations, we are able to represent what the robot has learned, generalize to unseen object locations and optimize the robotic execution instead of replaying a non-optimal behavior. A two-staged segmentation algorithm that employs skill template matching via Hidden Markov Models has been developed to extract motion primitives from the demonstration and gives them semantic meanings. In this way, the transfer of task knowledge has been improved from a simple replay of the demonstration towards a semantically annotated, optimized and generalized execution. We evaluated the extraction of a set of skills in simulation and prove that the task execution can be optimized by such means.
elib-URL des Eintrags: | https://elib.dlr.de/139470/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Hand Pose-based Task Learning from Visual Observations with Semantic Skill Extraction | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 31 August 2020 | ||||||||||||||||||||
Erschienen in: | 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/RO-MAN47096.2020.9223479 | ||||||||||||||||||||
Seitenbereich: | Seiten 596-603 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISSN: | 1944-9437 | ||||||||||||||||||||
ISBN: | 978-1-7281-6075-7 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Learning from Demonstration, Skill learning, hand pose estimation, gesture recognition, task level programming, Programming by Demonstration, hand tracking, segmentation, template matching, dynamic movement primitives | ||||||||||||||||||||
Veranstaltungstitel: | 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) | ||||||||||||||||||||
Veranstaltungsort: | Naples, Italy | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||||||
Veranstaltungsende: | 4 September 2020 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | Vorhaben Autonome, lernende Roboter (alt), Vorhaben Intuitive Mensch-Roboter Schnittstelle (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||
Hinterlegt von: | Eiband, Thomas | ||||||||||||||||||||
Hinterlegt am: | 09 Dez 2020 22:45 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags