Boerdijk, Wout and Sundermeyer, Martin and Durner, Maximilian and Triebel, Rudolph (2020) Self-Supervised Object-in-Gripper Segmentation from Robotic Motions. In: 4th Conference on Robot Learning, CoRL 2020. CoRL 2020, 2020-11-16 - 2020-11-18, Virtual. ISSN 2640-3498.
PDF
20MB |
Abstract
Accurate object segmentation is a crucial task in the context of robotic manipulation. However, creating sufficient annotated training data for neural networks is particularly time consuming and often requires manual labeling. To this end, we propose a simple, yet robust solution for learning to segment unknown objects grasped by a robot. Specifically, we exploit motion and temporal cues in RGB video sequences. Using optical flow estimation we first learn to predict segmentation masks of our given manipulator. Then, these annotations are used in combination with motion cues to automatically distinguish between background, manipulator and unknown, grasped object. In contrast to existing systems our approach is fully self-supervised and independent of precise camera calibration, 3D models or potentially imperfect depth data. We perform a thorough comparison with alternative baselines and approaches from literature. The object masks and views are shown to be suitable training data for segmentation networks that generalize to novel environments and also allow for watertight 3D reconstruction.
Item URL in elib: | https://elib.dlr.de/139332/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||
Title: | Self-Supervised Object-in-Gripper Segmentation from Robotic Motions | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||
Journal or Publication Title: | 4th Conference on Robot Learning, CoRL 2020 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Self-Supervised Learning, Object Segmentation | ||||||||||||||||||||
Event Title: | CoRL 2020 | ||||||||||||||||||||
Event Location: | Virtual | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 16 November 2020 | ||||||||||||||||||||
Event End Date: | 18 November 2020 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Boerdijk, Wout | ||||||||||||||||||||
Deposited On: | 08 Dec 2020 14:52 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page