Boerdijk, Wout und Sundermeyer, Martin und Durner, Maximilian und Triebel, Rudolph (2020) Self-Supervised Object-in-Gripper Segmentation from Robotic Motions. In: 4th Conference on Robot Learning, CoRL 2020. CoRL 2020, 2020-11-16 - 2020-11-18, Virtual. ISSN 2640-3498.
PDF
20MB |
Kurzfassung
Accurate object segmentation is a crucial task in the context of robotic manipulation. However, creating sufficient annotated training data for neural networks is particularly time consuming and often requires manual labeling. To this end, we propose a simple, yet robust solution for learning to segment unknown objects grasped by a robot. Specifically, we exploit motion and temporal cues in RGB video sequences. Using optical flow estimation we first learn to predict segmentation masks of our given manipulator. Then, these annotations are used in combination with motion cues to automatically distinguish between background, manipulator and unknown, grasped object. In contrast to existing systems our approach is fully self-supervised and independent of precise camera calibration, 3D models or potentially imperfect depth data. We perform a thorough comparison with alternative baselines and approaches from literature. The object masks and views are shown to be suitable training data for segmentation networks that generalize to novel environments and also allow for watertight 3D reconstruction.
elib-URL des Eintrags: | https://elib.dlr.de/139332/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||||||
Titel: | Self-Supervised Object-in-Gripper Segmentation from Robotic Motions | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||
Erschienen in: | 4th Conference on Robot Learning, CoRL 2020 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Self-Supervised Learning, Object Segmentation | ||||||||||||||||||||
Veranstaltungstitel: | CoRL 2020 | ||||||||||||||||||||
Veranstaltungsort: | Virtual | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 16 November 2020 | ||||||||||||||||||||
Veranstaltungsende: | 18 November 2020 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Boerdijk, Wout | ||||||||||||||||||||
Hinterlegt am: | 08 Dez 2020 14:52 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags