Rußwurm, Marc and Ali, Syed Mohsin and Zhu, Xiaoxiang and Gal, Yarin and Körner, Marco (2020) Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, pp. 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, Virtual Symposium. doi: 10.1109/igarss39084.2020.9323890. ISBN 978-172816374-1. ISSN 2153-6996.
PDF
604kB |
Abstract
Deep Learning is often criticized as black-box method which often provides accurate predictions, but limited explanation of the underlying processes and no indication when to not trust those predictions. Equipping existing deep learning models with an (approximate) notion of uncertainty can help mitigate both these issues therefore their use should be known more broadly in the community. The Bayesian deep learning community has developed model-agnostic and easy to-implement methodology to estimate both data and model uncertainty within deep learning models which is hardly applied in the remote sensing community. In this work, we adopt this methodology for deep recurrent satellite time series forecasting, and test its assumptions on data and model uncertainty. We demonstrate its effectiveness on two applications on climate change, and event change detection and outline limitations.
Item URL in elib: | https://elib.dlr.de/139306/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 29 September 2020 | ||||||||||||||||||||||||
Journal or Publication Title: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1109/igarss39084.2020.9323890 | ||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Remote Sensing, Deep Learning, Uncertainties, Time Series, Bayesian Neural Networks | ||||||||||||||||||||||||
Event Title: | IGARSS 2020 | ||||||||||||||||||||||||
Event Location: | Virtual Symposium | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 26 September 2020 | ||||||||||||||||||||||||
Event End Date: | 2 October 2020 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Ali, Syed Mohsin | ||||||||||||||||||||||||
Deposited On: | 10 Dec 2020 12:14 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page