Rußwurm, Marc und Ali, Syed Mohsin und Zhu, Xiaoxiang und Gal, Yarin und Körner, Marco (2020) Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Seiten 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, Virtual Symposium. doi: 10.1109/igarss39084.2020.9323890. ISBN 978-172816374-1. ISSN 2153-6996.
PDF
604kB |
Kurzfassung
Deep Learning is often criticized as black-box method which often provides accurate predictions, but limited explanation of the underlying processes and no indication when to not trust those predictions. Equipping existing deep learning models with an (approximate) notion of uncertainty can help mitigate both these issues therefore their use should be known more broadly in the community. The Bayesian deep learning community has developed model-agnostic and easy to-implement methodology to estimate both data and model uncertainty within deep learning models which is hardly applied in the remote sensing community. In this work, we adopt this methodology for deep recurrent satellite time series forecasting, and test its assumptions on data and model uncertainty. We demonstrate its effectiveness on two applications on climate change, and event change detection and outline limitations.
elib-URL des Eintrags: | https://elib.dlr.de/139306/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 29 September 2020 | ||||||||||||||||||||||||
Erschienen in: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/igarss39084.2020.9323890 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Remote Sensing, Deep Learning, Uncertainties, Time Series, Bayesian Neural Networks | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2020 | ||||||||||||||||||||||||
Veranstaltungsort: | Virtual Symposium | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 26 September 2020 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 Oktober 2020 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Ali, Syed Mohsin | ||||||||||||||||||||||||
Hinterlegt am: | 10 Dez 2020 12:14 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags