Martin del Campo Becerra, Gustavo Daniel and Serafín García, Sergio Alejandro and Reigber, Andreas and Ortega Cisneros, Susana (2020) Parameter Selection Criteria for TomoSAR Focusing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.3042661. ISSN 1939-1404.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/9281339
Abstract
The synthetic aperture radar (SAR) tomography (TomoSAR) inverse problem is commonly tackled in the context of the direc-tion-of-arrival estimation theory. The latter allows achieving super-resolution, along with ambiguity levels reduction, thanks to the use of parametric focusing methods, as multiple signal classification (MUSIC), and statistical regularization techniques, like the maximum-likelihood inspired adaptive robust iterative approach (MARIA). Nevertheless, in order to correctly suit the considered signal model, MUSIC and most regularization ap-proaches require an appropriate setting of the involved parame-ters. In both cases, the accuracy of the retrieved solutions de-pends on the right selection of the assigned values. Thus, with the aim of dealing with such an issue, this article addresses sev-eral parameter selection strategies, adapted specifically to the TomoSAR scenario. Parametric techniques as MUSIC solve the TomoSAR problem in a different manner as the regularization methods do, hence, each approach demands different methodol-ogies for the proper estimation of their parameters. Conse-quently, we refer to the Kullback-Leibler information criterion for the model order selection of parametric techniques as MUSIC, whereas we rather explore the Morozov’s discrepancy principle, the L-Curve, the Stein’s unbiased risk estimate and the generalized cross-validation, to choose the regularization pa-rameters. After the incorporation of these criteria to MUSIC and MARIA, respectively, their capabilities are first analyzed through simulations, and later on, utilizing real data acquired from an urban area.
Item URL in elib: | https://elib.dlr.de/139067/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Parameter Selection Criteria for TomoSAR Focusing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 4 December 2020 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2020.3042661 | ||||||||||||||||||||
Editors: |
| ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Series Name: | Super-resolution of Remotely Sensed Images | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Information criteria, generalized cross-validation, L-Curve, maximum likelihood (ML), model order selection (MOS), syn-thetic aperture radar (SAR) tomography (TomoSAR). | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Aircraft SAR | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||||||||||||||
Deposited By: | Martin del Campo Becerra, Gustavo | ||||||||||||||||||||
Deposited On: | 02 Dec 2020 18:56 | ||||||||||||||||||||
Last Modified: | 29 Nov 2021 08:21 |
Repository Staff Only: item control page