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Abstract—The synthetic aperture radar (SAR) tomography (To-
moSAR) inverse problem is commonly tackled in the context of the
direction-of-arrival estimation theory. The latter allows achieving
super resolution, along with ambiguity levels reduction, thanks to
the use of parametric focusing methods, as multiple signal classifi-
cation (MUSIC) and statistical regularization techniques, like the
maximum-likelihood-inspired adaptive robust iterative approach
(MARIA). Nevertheless, in order to correctly suit the considered
signal model, MUSIC and most regularization approaches require
an appropriate setting of the involved parameters. In both cases, the
accuracy of the retrieved solutions depends on the right selection
of the assigned values. Thus, with the aim of dealing with such
an issue, this article addresses several parameter selection strate-
gies, adapted specifically to the TomoSAR scenario. Parametric
techniques as MUSIC solve the TomoSAR problem in a different
manner as the regularization methods do, hence, each approach
demands different methodologies for the proper estimation of their
parameters. Consequently, we refer to the Kullback–Leibler infor-
mation criterion for the model order selection of parametric tech-
niques as MUSIC, whereas we rather explore the Morozov’s dis-
crepancy principle, the L-Curve, the Stein’s unbiased risk estimate,
and the generalized cross-validation to choose the regularization
parameters. After the incorporation of these criteria to MUSIC and
MARIA, respectively, their capabilities are first analyzed through
simulations, and later on, utilizing real data acquired from an
urban area.

Index Terms—Generalized cross-validation, information
criteria, L-Curve, maximum likelihood (ML), model order
selection (MOS), synthetic aperture radar (SAR) and tomography
(TomoSAR).

NOMENCLATURE

List of Acronyms
AIC Akaike information criterion.
BIC Bayesian information criterion.
BMR Bayes minimum risk.
CLS Constrained least squares.
DOA Direction of arrival.
ESPRIT Estimation of signal parameters by rotational in-

variance techniques.
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FD Fréchet distance.
GCV Generalized cross-validation.
KL Kullback–Leibler.
MARIA ML-inspired adaptive robust iterative approach.
MAP Maximum a posteriori probability.
ML Maximum likelihood.
MOS Model order selection.
MSE Mean squared error.
MUSIC Multiple signal classification.
SAR Synthetic aperture radar.
TomoSAR SAR tomography.
TSVD Truncated singular value decomposition.
PCA Principal component analysis.
PLOS Perpendicular to the line-of-sight.
PSP Power spectrum pattern.
RMSE Root MSE.
ROI Region of interest.
SLC Single-look complex.
SNR Signal-to-noise ratio.
SURE Stein’s unbiased risk estimate.

Glossary of Notation
〈·〉 Averaging operator.
D(u) Diagonal matrix with vector u at the principal

diagonal.
‖ · ‖ Euclidean 𝓁2-norm.
E() Expectation operator.
+ Hermitian conjugate (adjoin).
I Identity matrix.
{U}diag Main diagonal of matrix U.
ln{·} Natural logarithm.
T Transpose.
tr{U} Trace of matrix U.

I. INTRODUCTION

W ITHIN the context of the DOA estimation theory [1,
Ch. 6], [2], the TomoSAR inverse problem is typically

described via the linear equation of observation [3]–[6]

⎡
⎣y

⎤
⎦
L×1

=

⎡
⎣ A

⎤
⎦
L×M

⎡
⎣ s

⎤
⎦
M×1

+

⎡
⎣n

⎤
⎦
L×1

. (1)

The TomoSAR acquisition constellation is composed by L
passes (flight tracks), each one with a different line of sight. One
coregistered SAR image is acquired from each pass; afterward,
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the imagery is coherently combined using SAR interferometric
techniques. Assuming coregistration independent on height,
these L passes are treated as a linear array. Accordingly, for
a given azimuth-range position, vector y represents the set of
the corresponding L processed signals; vector s gathers M
samples of the continuous complex random reflectivity, taken at
the PLOS elevation positions {zm}Mm=1; and vector n accounts
for the additive noise. TheL×M steering matrixA is the signal
formation operator that maps S → Y , the source Hilbert signal
space S onto the observation Hilbert signal space Y .

Given an azimuth-range location within the illuminated scene,
the main goal of TomoSAR is to retrieve the PSP in the PLOS
height direction, depicted in a discrete form through vector b =
{bm}Mm=1 = {〈|sm|2〉}Mm=1, i.e., the second-order statistics of
the complex reflectivity vector s.

Using matched filtering for TomoSAR focusing attains a reso-
lution in the PLOS height direction ρPLOS, which is constrained
to the acquisition geometry [7], [8]. As a rule of thumb, the
larger the tomographic apertureDTomo is, the finer the attainable
resolution, as specified by [7, (8)]

ρPLOS =
λr1

2DTomo
(2)

with λ standing for the carrier wavelength and with r1 as the
slant-range distance to a particular target. Still, the amount and
distribution of the several passes must be carefully planned,
taking the following into consideration.

1) In order to guarantee strong ambiguity rejection along the
PLOS height range of interest, the baseline between passes
must be sufficiently small. Assuming evenly distributed
passes, the PLOS height of ambiguity VPLOS is defined
by [7, (9)]

VPLOS =
λr1
2𝒹

(3)

in which 𝒹 is the cross-range oriented baseline between
passes.

2) Generally, when the passes are not uniformly distributed,
it leads to higher ambiguity levels [8], [9].

The desired resolution specifies the length of the tomographic
apertureDTomo, whereas the height of ambiguity VPLOS defines
the baseline 𝒹 between passes. The baseline 𝒹 between passes,
necessary to avoid ambiguities, depends on the total PLOS
height extent to be examined. Yet, in practical scenarios, the
number of passes is constrained to the revisit time that leads
to temporal decorrelation issues and to the feasibility of the
individual missions to perform the numerous passes, limiting
the achievable resolution.

With the aim of easing these limitations, the usage of super
resolved DOA-inspired techniques is a common practice. These
methods are not constrained to the resolution of the acquisition
geometry, as they do not involve a conventional inversion of
the spectrum [10]. Particularly, parametric focusing techniques
as MUSIC [1], [11], and ESPRIT [1], and iterative statistical
regularization methods, like the ones based on ML [3]–[6],
[10], improve significantly the resolution in the PLOS height

direction, performing suppression of artifacts, and reduction of
the ambiguity levels.

In order to correctly suit the considered signal model, MUSIC,
ESPRIT, and most regularization approaches (e.g., MARIA [3],
[4]) require an appropriate setting of the involved parameters.
The right performance of parametric techniques as MUSIC
and ESPRIT, depends on the proper specification of the model
order [1, Appendix C], [12]. This type of methods assumes that
the scene is composed by a finite number of point-type like
backscattering sources, which is expected to be known a priori.
Conversely, regularization methods as MARIA entail the right
selection of the regularization parameters to assure retrieving
well-conditioned solutions.

All aforementioned parametric and regularization approaches
must guarantee “good-fitted” reconstructions. A solution is said
to be good fitted, when it fits correctly enough with the position
and density of the targets within the field backscattered toward
the sensor. Consequently, the values assigned to the correspond-
ing parameters must avoid the next issues [13].

1) “Underfitting,” meaning that the retrieved PSP may not
be well adapted to the particularities of the input signals.
Some of the actual targets might be suppressed, as they
are taken by noise.

2) “Overfitting,” meaning that the residual variation (i.e.,
noise) is considered as part of the recovered signal. The
retrieved PSP may display targets where in reality there
are none, causing false detections.

Accordingly, the main contribution of this article is the adap-
tation of different parameter selection criteria to the TomoSAR
scenario, and their subsequent incorporation into the treated
parametric and regularization focusing techniques. Parametric
methods as MUSIC and ESPRIT solve the TomoSAR problem
in a different manner as the regularization methods do, hence,
each approach demands different methodologies for the proper
estimation of their parameters. Therefore, in the case of such
parametric techniques, this work assesses a MOS rule that is
based on ML and on the KL information criterion, which is
also the basis for tools as AIC and BIC [12]. On the other
hand, we explore four different criteria for the right selection of
regularization parameters: The Morozov’s discrepancy principle
[14], the L-Curve [14], [15], SURE [16], [17], and GCV [17],
[18]. For demonstration and evaluation purposes, the addressed
MOS rule is incorporated into MUSIC [1], [11], whereas we
refer to MARIA [3], [4], to analyze the other methodology.

The remaining of the article is organized as follows: The
TomoSAR signal model is described in Section II; Section III
presents the TomoSAR-adapted MOS rule; Section IV re-
views the strategies for choosing the regularization parame-
ters, namely, the Morozov’s discrepancy principle, the L-Curve,
SURE, and GCV; Section V analyzes the addressed criteria
through numerical examples, making use of MUSIC to study
the treated MOS rule, and MARIA to study the different tools
for selecting the regularization parameters; Section VI presents
a comparison between the best versions (according to the cho-
sen parameter selection strategies) of MUSIC and MARIA via
experimental results, gotten from an urban test site; finally
Section VII concludes this work
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II. TOMOSAR SIGNAL MODEL

For each azimuth-range position within the illuminated area,
given the data recordingsy = {yl}Ll=1, the steering matrix A and
some prior knowledge on the problem (e.g., about the statistics of
the signal and noise), the nonlinear TomoSAR inverse problem
consists in retrieving an estimate b̂ of the actual PSP vector
b = {〈|sm|2〉}Mm=1.

The covariance matrix

Y =
1

J

J∑
j=1

y(j)y
+
(j) (4)

is commonly employed in order to increase accuracy in presence
of signal-dependent (multiplicative) noise [3], [19, Ch. 18],
and in order to handle the multiple nondeterministic sources.
Here, J indicates the amount of independent realizations (looks,
snapshots) of the signal acquisitions. Recall that TomoSAR
is customarily treated as an ergodic process, meaning that its
statistical properties are deduced from a single random realiza-
tion. Thus, multilooking is technically accomplished through
the averaging of adjacent values, e.g., via Boxcar filtering.

Matrix A in (1) gathers M steering vectors, each one of di-
mension L. The steering vectors {am}Mm=1 contain the interfer-
ometric phase information associated to a source located along
the PLOS elevation positions {zm}Mm=1, above the reference
focusing plane. For a specified elevation position z, the related
steering vector is given by [20], [21],

a (z) =
[
1 exp {jkz2z} · · · exp {jkzLz}

]T
, (5)

in which {
kzl =

(
4π

λ

)(
dl

r1 sin θ

)}L

l=2

(6)

is the two-way vertical wavenumber between the master track
and the lth acquisition position. The slant-range distance to a
particular target is defined by r1, whereas {dl}Ll=2 is the cross-
range oriented baseline between the master position and the lth
acquisition position; with λ standing for the carrier wavelength
and θ standing for the incidence angle.

The TomoSAR problem is intrinsically ill-conditioned, since
it does not accomplish two of the three Hadamard conditions
[19, Ch. 15], [22], to be considered as well posed.

1) The existence condition is not achieved. The PSP is a
continuous function b(z), in which z refers to the PLOS
height direction. Since the data recordings y = {yl}Ll=1

are finite dimensional, there is not enough information to
reconstruct the whole PSP function b(z). Therefore, due to
practical reasons, the PSP is rather represented in a discrete
form through vector b = {bm}Mm=1, constructed using a
sufficiently large number of samples M , taken from b(z)
at the PLOS height positions {zm}Mm=1.

2) The uniqueness condition is not accomplished. Normally,
the number of samples M is much larger than the number
of data recordings L. From a limited small quantity of
measurements, a large number of samples representing
the PSP are to be estimated; this means that an infinite
number of solutions to recover b̂ exist. Additionally, the

unavoidable presence of additive and signal-dependent
noise, along with the inherent imprecisions of any problem
model, adds statistical uncertainty.

Hence, by making some appropriate assumptions and/or by
imposing some form of constraints, the different focusing tech-
niques must guarantee well-conditioned solutions to the nonlin-
ear TomoSAR inverse problem.

Parametric methods as MUSIC and ESPRIT parameterize
vector b. They assume that vector b is composed by a certain
amount of point-type like backscattering sources, usually much
smaller than the number of acquisitions L [1, Ch. 5]. In this way,
the TomoSAR problem is reduced to the problem of selecting an
integer-valued parameter, which describes the number of signals
impinging on the array [1, Appendix C]. For the case of MUSIC,
explained more in detail in Section III, the integer-valued param-
eter (so-called model order) refers to the number of eigenvalues
(and the corresponding eigenvectors) of matrix Y in (4), which
belong to the signal subspace.

On the other hand, most regularization techniques replace the
ill-conditioned TomoSAR inverse problem with a well-posed
optimization problem. For such aim, the regularization methods
addressed in this article consider the signal model defined in
the other related studies [3]–[6]: The complex random Gaussian
zero-mean vectors n, s, and y in (1) are characterized by their
corresponding correlation matrices

Rn = E
(
nn+

)
= N0I, (7)

Rs = E
(
ss+

)
= D (b) , (8)

and

Ry = E
(
yy+

)
= ARsA

+ +Rn, (9)

where N0 is the power spectral density of the white noise
power [20], and vector b defines the backscattering power for a
specified azimuth-range position, the so-called PSP.

Assuming that the entries of vector s are uncorrelated, sim-
plifies the mathematical developments that led to MARIA in [3]
and [4]. This work refers to the same mathematical expressions;
therefore, we make the same assumption. Consequently, matrix
Rs in (8) is modeled as a diagonal matrix, as described by the
unconditional model in [21, (10)]. Also, contrary to [23] and
[24], the MOS rule presented next in Section III, makes use of
the same signal model, specified by the correlation matrix Ry

in (9).
In principle, all regularization techniques addressed in this

article, along with the respective parameter selection criteria,
are applicable to all those inverse ill-posed problems, described
by the signal model stated previously. This means that the scope
of this work is not only limited to researchers interested in
TomoSAR, as it also includes those researchers interested in
signal processing.

III. MODEL ORDER SELECTION

As mentioned before, spectral analysis-based parametric tech-
niques as MUSIC [1], [11], and ESPRIT [1], require the selection
of an integer-valued parameter (so-called model order) that
correctly specifies the data model [12]. For the linear case, the
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ML method of parameter estimation is usually employed for
this purpose, being the basis of MOS rules as AIC and BIC.
Such MOS rules suggest using the log-likelihood function in [1,
(C.2.1)]

ϕ̂ = argmax
ϕ

{ln {p (y |ϕ )}} . (10)

Here, vector ϕ contains the values that correctly specify
the data model, utilized to properly recover the data vector y;
whereas vector ϕ̂ gathers the corresponding estimated values.
The dimension of ϕ defines the model order.

However, the log-likelihood function ln{p(y|ϕ)} in (10) is
not applicable to the case under study, since the TomoSAR
problem is nonlinear, as it consists on retrieving an estimate b̂
of the PSP. Therefore, the ML method of parameter estimation
must be properly adapted to the TomoSAR scenario. With this
aim, we refer first to the ML solution to the previously stated
nonlinear TomoSAR inverse problem, which is the basis of the
TomoSAR-adapted MOS rule introduced afterwards.

A. Maximum Likelihood

Vectorsy, s, andn in (1) are customarily modeled as statistical
vectors, as they are constructed from physical phenomena with
an intrinsic statistical nature. A statistical vector represents, in
theory, an infinite number of different realizations of a process.
Hence, vector y is explicitly characterized through its probabil-
ity density function (pdf), given by [3], [10],

p (y) = π−L det−1 {Ry} · exp
{− (

y+R−1y y
)}

. (11)

Recall thaty is aL-dimensional complex random Gaussian zero-
mean vector.

Assuming a priori knowledge about the pdf of the noise
vector n and the PSP vector b, the MAP approach provides a
statistically optimal solution to the TomoSAR inverse problem,
via [2, Ch. 8]

b̂ = argmax
b

{ln {p (b|y)}} (12)

with

ln {p (b|y)} = ln {p (y|b)}+ ln {p (b)} − ln {p (y)} , (13)

according to the Bayes formula, and since ln{·} is a monotoni-
cally increasing function.

Nevertheless, for the case under study, the pdf p(b) is gen-
erally unknown. Thus, setting p(b) ≈ const and ignoring those
terms that do not comprise b in (13), we rather refer to the
log-likelihood function

ln {p (y|b)} = −ln {det {Ry}} − y+R−1y y (14)

where the terms that do not contain b have been ignored. The
ML solution to the TomoSAR inverse problem is given by [3],
[4],

b̂ = argmax
b

{ln {p (y|b)}} . (15)

Consider then that b = b(ϕ), such that b entails hav-
ing a vector ϕ that correctly specifies the data model. In
this way, we can make use of the log-likelihood function in

(14) to derive the TomoSAR-adapted MOS rule introduced
below.

Previous related studies [23, (10)], [24, (14)], propose ap-
proximating (14) through the eigendecomposition of the sample
covariance matrixY in (4); leading to various eigenvalues-based
MOS rules, which are based on the KL information criterion
[12]. Yet, the novelty of this work is approximating (14) differ-
ently.

We refer to the signal model defined in Section II, character-
ized by the correlation matrix Ry = Ry (b) = AD(b)A+ +
N0I. Consequently, the log-likelihood function in (14) becomes
solution dependent. The actual PSP vector b is unknown, mean-
ing that an estimate b̂ is necessary to construct the correlation
matrix Ry(b̂). The more accurate b̂ is, the better the approxi-
mation to the true log-likelihood function.

We infer that after trying several hypotheses {ϕ̂n}Nn=1, the re-
trieval of the most accurate estimate b̂ entails the appropriate se-
lection of the model order. In this way, vectorϕ can be indirectly
estimated. Note that the dimension of ϕ̂n changes among the
hypotheses n = 1, . . . , N ; meaning that each {ϕ̂n}Nn=1 refers
to a different model order.

As exemplified in [1, (C.3.6)], we emphasize the dependence
of the pdf in (14) on vector {ϕ̂n}Nn=1 in (10) through

p̂n

(
y
∣∣∣b̂ (ϕ̂n)

)
Δ
= p̂n (y, ϕ̂n) ; n = 1, . . . , N. (16)

The expression at the right hand side denotes the pdf of y under
{ϕ̂n}Nn=1, while the expression at the left hand side denotes the
pdf ofy under {b̂(ϕ̂n)}Nn=1 for the hypotheses {ϕ̂n}Nn=1, which
are assumed mutually exclusive.

With these clarifications, we can deduce that the treated
MOS tool is a posteriori. Given a parametric focusing
technique (e.g., MUSIC or ESPRIT), different hypotheses
{ϕ̂n}Nn=1 are considered; then, the respective several estimates
{ln{p̂n(y|b̂(ϕ̂n))}}Nn=1 are retrieved; and finally, after com-
paring all of them, the most suitable model order is selected,
according to a criterion defined next.

B. Kullback–Leibler Information Criterion

The KL information function [1, Appendix C], [12],

D (p, p̂) =

∫
p (y) ln

{
p (y)

p̂ (y)

}
dy (17)

measures the discrepancy between the true pdf p(y) and the pdf
of the data model p̂(y). The ideal choice for p̂(y) in (17) would
be the modeled likelihood p(y|b(ϕ)) in (15), nonetheless, as
explained previously, this function is not available, since b(ϕ)
is unknown and needs to be estimated. Therefore, we refer to
{p̂n(y|b̂(ϕ̂n))}Nn=1 instead.

The AIC and BIC MOS rules, introduced in [12], consist
in minimizing the KL discrepancy in (17), given the several
hypotheses {ϕ̂n}Nn=1 . In the case of AIC, this is equivalent to
maximizing the relative KL information [12]

I (p, p̂n) ∼= Ey

(
ln
{
p̂n

(
y
∣∣∣b̂ (ϕ̂n)

)}
−M

)
;

n = 1, . . . , N. (18)
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Here, Ey(·) denotes the expectation with respect to the pdf of y.
Subsequently, the relative KL information in (18) is estimated
in an unbiased manner via minimizing

AIC
(
b̂ (ϕ̂n)

)
= − 2 · ln

{
p̂n

(
y
∣∣∣b̂ (ϕ̂n)

)}
+ 2M ;

n = 1, . . . , N ; (19)

which defines the AIC MOS rule. Conversely, the BIC MOS
rule selects the hypothesis that maximizes the relative KL infor-
mation in (18) through the approximation [12]

Î (p, p̂n) ∼= ln
{
p̂n

(
y
∣∣∣b̂ (ϕ̂n)

)}
− M

2
ln {L} ; n = 1, . . . , N ;

(20)
or equivalently minimizes

BIC
(
b̂ (ϕ̂n)

)
= − 2 · ln

{
p̂n

(
y
∣∣∣b̂ (ϕ̂n)

)}
+M · ln {L} ;

n = 1, . . . , N. (21)

Under the log-likelihood function in (10), M in (19) and (21),
respectively, represents the model order, namely, the dimension
of vector {ϕ̂n}Nn=1 [1, Appendix C]. Nonetheless, for the con-
sidered log-likelihood function in (14), with Ry(b̂) as in (9), M
refers to the dimension of vector b̂(ϕ̂n), which remains constant.
This means that both expressions in (19) and (21), are reduced
to

KL
(
b̂ (ϕ̂n)

)
= − 2 · ln

{
p̂n

(
y
∣∣∣b̂ (ϕ̂n)

)}
; n = 1, . . . , N ;

(22)
since the addition of a constant value does not change the
minimizer.

In the previous studies [12], [23], [24], the second term of
AIC and BIC prevents selecting model orders larger than the
most proper one, with the aim of avoiding overfitting. However,
in this work, both expressions are reduced to (22), which does
not have a penalty term. The latter may translate into choosing
models with a higher order. Nevertheless, take into account that
the models with relatively larger orders tend to perform better
when the data generating mechanism is more complex than the
models used to fit [1, Appendix C]. This means that, under such
circumstance, the model orders that are relatively higher than
the most proper one, tend to retrieve also good-fitted solutions.

We assume that TomoSAR falls into the case aforementioned,
since most of the perturbations in the observed data are due
to the signal formation; recall that the TomoSAR problem is
intrinsically ill-conditioned asM � L. Subsequently, as argued
in Section V, since KL in (22) does not have a penalty term,
we suggest preventing overfitting by restricting the upper limit
of the range of possible hypotheses {ϕ̂n}Nn=1, excluding the
highest orders. Conversely, restricting the lower limit prevents
underfitting.

C. Multiple Signal Classification

The capabilities of KL in (22) are assessed in Section V;
for such a purpose, we refer to MUSIC [1], [11]. Let
[�1 ≥ �2 ≥ . . . ≥ �L] denote the set of eigenvalues, arranged
in decreasing order, of the sample covariance matrix Y in (4) of

TABLE I
INCORPORATION OF MOS INTO MUSIC FOR THE TOMOSAR CASE

dimension L× L. The corresponding eigenvectors are split into
two subsets: Q = [q1 q2 . . . qn ] is related to the n eigenval-
ues in the signal subspace, whereas G = [g1 g2 . . . gL−n ] is
related to the remainingL− n eigenvalues in the noise subspace.
For such a model, the MUSIC spectral estimator is defined via
[1, (4.5.15)]:

{
b̂m =

1

a+mGG+am

}M

m=1

(23)

with GG+ as the so-called noise subspace covariance matrix.
Note that n refers to the model order, which is to be selected
using KL in (22).

Vectors {ϕ̂n}N=L−1
n=1 in (22) contain the eigenvalues in the

signal subspace (arranged in decreasing order) as presumed for
the different hypothesis n = 1, . . . , L− 1. The corresponding
model orders, for each one of these vectors, are given by
{n}N=L−1

n=1 . For this particular case, the index of the hypotheses
{ϕ̂n}N=L−1

n=1 corresponds to the dimension of the respective
vector. The upper limit is set to N = L− 1, since we have to
make sure of having at least one eigenvector in G to be able to
compute GG+ in (23).

Table I presents the explicit implementation of MUSIC, incor-
porating the MOS tool in (22). We consider all possible assign-
ments n = 1, . . . , L− 1, however, this range can be modified
by the user. As many other super resolution techniques, MUSIC
does not preserve radiometric accuracy; therefore, in order to
keep {b̂n}N=L−1

n=1 within the same numerical range as y when
computing KL in (22), it is advisable to normalize {b̂n}N=L−1

n=1

with respect to tr{Y}.

IV. REGULARIZATION PARAMETER SELECTION

Regularization approaches are widely used to solve linear
problems as the one given in (1), see [14] and [22], and the
references therein. The main idea is to replace the ill-conditioned
problem with a well-posed optimization problem. The retrieval
of well-conditioned solutions (in the Hadamard sense [22]) is
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accomplished by incorporating known properties of the solution
into the solver and by providing smoothing into the solution.

In previous related studies [3]–[6], [25], [26], different sta-
tistical regularization techniques have been extended to cope
with nonlinear ill-posed inverse problems, which is the case for
TomoSAR. The methodology is easy to implement; however, the
correct setting of regularization parameters is normally required.
There is no known method for the optimal choice of such
regularization parameters [14], nevertheless, various strategies
offer satisfactory approximations for several imaging problems,
e.g., denoising.

The aim of this section is to adapt some of the most popular
parameter selection criteria to the case under study. Specif-
ically, we refer to the Morozov’s discrepancy principle [14],
the L-Curve [14], [15], SURE [16], [17], and GCV [17], [18].
In order to assess these tools, we refer to MARIA [3], [4], to
perform focusing of the TomoSAR data. MARIA is an iterative
regularization technique that achieves super resolution.

We start by clarifying to which regularization techniques the
aforementioned parameter selection methodology is applicable.
These regularization methods have a particular structure, to be
discussed in the following subsection.

A. Solution Operator

As explained previously in Section II, the nonlinear To-
moSAR inverse problem consists in recovering an estimate b̂
of the PSP vector b in (8). The latter can be expressed through
the use of a solution operator F, via

b̂ =
{
Fyy+F+

}
diag

(24)

where operator {·}diag retrieves a vector composed of the ele-
ments at the main diagonal of the embraced matrix. Pursuing
better accuracy in presence of multiplicative noise and in order
to handle the multiple nondeterministic sources, the solver in
(24) may rather employ the sample covariance matrix in (4),
such that b̂ = {FYF+}diag .

By instance, the popular descriptive regularization CLS
method [3], [26], solves the linear equation of observation in
(1) in the following manner:

ŝCLS = FCLS y =
(
A+A+ αI

)−1
A+y (25)

with FCLS as a solution operator and with α as a regularization
parameter. The regularization term αI in FCLS in (25) is nec-
essary to make the solution well-conditioned. Hence, solving
(1) requires the choice of a suitable value α > 0, which in
the limiting case when α→ 0, the problem is reduced to its
unconstrained ill-posed least squares version. How to select a
proper value of α, referred from now on as ξ = α, is argued
later on.

Note that the expression given in (24) admits the usage of
FCLS to obtain an estimate b̂CLS. Thus, having a solution
operator F permits solving the linear equation of observation
in (1) and the nonlinear TomoSAR problem in (24).

As observed further below, in principle, the addressed strate-
gies for choosing regularization parameters can be applied to
all those regularization techniques that make use of a solution

operator F. A list of several regularization techniques that meet
this requirement can be found in [3, Table I]; among these
methods is MARIA, presented next.

B. Overview of MARIA

MARIA is an iterative statistical regularization method that
offers similar advantages as the DOA-inspired parametric tech-
niques do, which are: resolution enhancement, suppression of
artifacts and reduction of the ambiguity levels [3], [4]. MARIA
provides an approximate solution to the ML optimization prob-
lem in (15) via [4]

b̂
[i+1]
MARIA = T[i]

[
b̂
[i]
BMR −w[i]

]
; i = 0, 1, . . . , I; (26)

where vector b̂
[i]
BMR = {F[i]

BMRYF
[i]+
BMR}diag is recognized as

the BMR estimate of the PSP. The subtraction of the bias vector
w[i] = {F[i]

BMRRnF
[i]+
BMR}diag from b̂

[i]
BMR corrects the shift

due to the noise in the observed data, whereas the diagonal
matrix T[i] = D({A+F

[i]+
BMRF

[i]
BMRA}diag) is an adaptive win-

dow operator that provides smoothing to the already rectified
BMR estimate. Matrix F

[i]
BMR stands for the so-called solution

operator, defined as

F
[i]
BMR = D

(
b̂[i]

)
A+R−1y . (27)

Notice that (27) requires of a first estimate of the PSP
b̂[0] in order to construct the matrices D(b̂[0]) and Ry =

AD(b̂[0])A+ +N0I.
The dependence on a first estimate b̂[0] implies that no unique

regularization method to recover b̂MARIA in (26) exists [3]. Dif-
ferent solutions are retrieved for different initial estimates b̂[0],
when the discrepancies between them are highly significant. Yet,
the adaptive iterative implementation of MARIA alleviates the
issue in certain extent.

MARIA refines the estimated PSP b̂[i] after each iteration,
until achieving convergence b̂

[i=I]
MARIA. In practice, the iterative

process is finished either by reaching a user tolerance control
level or a maximum number of iterations. We recommend using
Capon beamforming [1], [20], to retrieve the initial input to
(26). Having a satisfactory first approximation b̂[0] reduces the
processing time, since less iterations are required to converge.

FactorN0 inRy in (27) assumes the role of a diagonal-loading
regularization parameter, which assures matrix Ry to be invert-
ible. The choice of this factor is extremely relevant, since a wrong
assigned value could cause under/over regularization of the
retrieved solutions. Consequently, the regularization parameter,
referred from now on as ξ = N0, must guarantee retrieving a
good-fitted (well-regularized) reconstruction.

In the following, we explain how to pick ξ by employing
the considered parameter selection criteria. These strategies are
normally divided into two categories.

1) One assuming previous knowledge of the noise variance;
including methods as the Morozov’s discrepancy principle
and SURE.

2) Another one extracting all necessary information from the
measurements themselves, with techniques as the L-Curve
and GCV.
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C. Morozov

The Morozov’s discrepancy principle selects the regulariza-
tion parameter ξ in (25) and (27), based on the noise level in
the data. A solution is acceptable if it produces a measurement
with the same magnitude as the estimated error in the data [14].
Accordingly, the idea of the Morozov’s discrepancy principle is
to choose a ξ > 0, such that

‖Aŝ (ξ)− y‖2 = δ2, (28)

where δ = E(‖n‖) =
√
Lσ2 and with ŝ(ξ) = F(ξ)y. The term

σ2 stands for the Gaussian noise variance. FactorN0 inRy has a
different sense for MARIA, it rather refers to the regularization
parameter ξ to be chosen. For such a case, we do not assume
that σ2 = N0.

Let y′ = U+ y, with U obtained from the TSVD of the steer-
ing matrix A. The numerical implementation of the Morozov’s
method, introduced in [14, Ch. 5], consists in finding a proper ξ
as the unique zero of the function

f (ξn) =

K∑
l=1

(
ξn

μ2
l + ξn

)2

(y′l)
2

+

L∑
l=K+1

(y′l)
2 − δ2; n = 1, . . . , N ; (29)

in which {μl}Kl=1 are the singular values of matrix A, which
are not set to zero. In order to define which singular values
{μl}Ll=K+1 set to zero, a PCA of matrix A is performed. As
explained in [27, Ch. 7], the total variance of the data in A is the
sum of all their singular values

∑L
l=1 μl. The first eigenvectoru1

points in the most significant direction of the data and explains a
fraction of the total variance. The next eigenvectors u2, . . . ,uL

accounts for decreasing fractions. Hence, we only preserve those
singular values which explain most of the data. When μ1 is
much larger than μK in (29) it can lead to instabilities due to
the amplification of the truncated error. Preventing this, in the
simulations presented in Section V, we keep 80% of the singular
values of matrix A to compute (29), the remaining 20% are set
to zero.

The main advantage of this implementation is that it does
not require the computation of several estimates {ŝ(ξn)}Nn=1 to
select the most suitable ξ, making it faster in contrast to the other
related techniques.

D. L-Curve

The L-Curve method seeks a balance between the norm of a
penalty term and the norm of the residual [14], [15]. It basically
consists in forming a smooth curve by plotting the points

LC (ξn) = [ln ‖{Aŝ (ξn)− y}‖ , ln {‖ŝ (ξn)‖}] , (30)

for a collection of candidates {ξn}Nn=1 with
{ŝ(ξn) = F(ξn)y}Nn=1. The resultant curve has the shape
of a letter L, with a smooth corner; the proper value for ξ is
found as near as possible to this corner.

The L-Curve consists of two parts, a flat (horizontal) frag-
ment, where the errors due to regularization dominate, and a

steep (horizontal) part, where the perturbation errors dominate.
The presence of perturbations (i.e., y+ � y, Y+ � Y,) when
solving practical problems is unavoidable, since the data (i.e.,
y, Y) is obtained from measurements, containing errors.

The horizontal part of the L-Curve corresponds to those so-
lutions where so much regularization is introduced; the solution
stays very smooth and ‖ŝ(ξn)‖ changes a little with the regular-
ization parameter. In contrast, the vertical part of the L-Curve
corresponds to solutions where ‖ŝ(ξn)‖ varies dramatically with
the regularization parameter while, at the same time, the residual
norm does not change much. When the horizontal and vertical
parts of the L-Curve start approaching each other, both terms,
‖ŝ(ξn)‖ and ‖Aŝ(ξn)− y‖, change more significantly with the
regularization parameter and at a different rate. Therefore, the
reason to use the ln− ln scale in (30) is emphasizing the corner
separating the vertical and the horizontal parts [28]. However,
depending on the problem, the corner in the L-Curve may not
be clearly defined.

Finding the corner of an L-Curve is not a trivial task; for such
goal, this article recommends using the algorithm presented in
[29]. The suggested algorithm is based on an estimation of the
local curvature of the L-Curve from three sampled points, as
defined by Menger [30], and a sampling update rule based on
the golden section search [31].

Three regularization parameters ξj < ξk < ξl identify three
pointsLC(ξj) < LC(ξk) < LC(ξl) along the curve, from which
the local curvature is obtained, via

C (LC (ξj) , LC (ξk) , LC (ξl)) =

4T

‖LC (ξj)−LC (ξk)‖ ‖LC (ξk)−LC (ξl)‖ ‖LC (ξl)−LC (ξj)‖
(31)

where T is the area of a triangle created with the three given
points. Having this in mind, ξ is selected from the point with
the largest change direction within an equal distance, which, in
terms of the previous definition, is the point of the curve with
the largest positive curvature.

In order to find the L-Curve’s corner, a golden section search
is performed [31]. First, the limits of the search [ξ1, ξ4] are
defined, such that ξi = 10xi . Later on, the remaining points are
calculated through

x2 =
x4 + βx1

1− β
; x3 = x1 − (x4 − x2) ; (32)

with β = (1 +
√
5)/2 as the so-called golden ratio.

Four points, LC(ξ1), LC(ξ2), LC(ξ3), and LC(ξ4), are
taken from the L-Curve in order to compute two curvatures
per iteration, C1 = C(LC(ξ1), LC(ξ2), LC(ξ3)) and C2 =
C(LC(ξ2), LC(ξ3), LC(ξ4)). These curvatures are compared
under two options.

1) If C1 > C2 then the next reassignments are made: ξ4 ←
ξ3, ξ3 ← ξ2,LC(ξ4) ← LC(ξ3) andLC(ξ3) ← LC(ξ2).
The recalculation of ξ2 and LC(ξ2) is made.

2) If C1 < C2 then the next reassignments are made: ξ1 ←
ξ2, ξ2 ← ξ3,LC(ξ1) ← LC(ξ2) andLC(ξ2) ← LC(ξ3).
The recalculation of ξ3 and LC(ξ3) is made.



MARTÍN-DEL-CAMPO-BECERRA et al.: PARAMETER SELECTION CRITERIA FOR TOMO-SAR FOCUSING 1587

The loop stops when the distance between ξ1and ξ4 becomes
smaller than a specified threshold. To secure a positive curvature
of C2 some checks are performed, so that, while C2 < 0, the
limit value is shifted ξ4 ← ξ3 and the respective computations
are made to advance to the next iteration.

E. Stein’s Unbiased Risk Estimate

In 1978, with the publication of the renowned article
“Smoothing noisy data with spline functions” [18], Craven and
Wahba introduced the basis for SURE and GCV. They propose
selecting an appropriate regularization parameter ξ, as the one
that minimizes an estimate of the MSE between the actual and
the recovered signal, calculated without knowing the true signal.
Then, ξ is chosen so that it satisfies

1

L

L∑
l=1

(yl − ŷl)
2 = σ2 (33)

with ŷ = Aŝ(ξ), ŝ(ξ) = F(ξ)y and σ2 as the Gaussian noise
variance.

The MSE is estimated via the unbiased approximation [18,
(1.8)]

η̂ (ξn) =
1

L
‖(I−AF (ξn))y‖2 − σ2

L
tr
{
(I−AF (ξn))

2
}

+
σ2

L
tr
{
(AF (ξn))

2
}
; n = 1, . . . , N. (34)

Subsequently, using the property [2, (A.27)],

tr {O+P} = tr {O}+ tr {P} , (35)

in which O and P are arbitrary square matrices, taking into
account that tr{I} = L and performing a sequence of evident
manipulations, (34) is simplified, yielding the SURE strategy

η̂SURE (ξn) =
1

L
‖(I−AF (ξn))y‖2 − σ2

+
2σ2

L
tr {AF (ξn)} ; n = 1, . . . , N. (36)

Equation (36) is equivalent to the SURE expression given in
[16, (6)], however, the equation in [16] is specific to the denoising
problem, which assumes that M = L. Thus, the main reason to
derive SURE as in (36) is to provide an expression suitable to
the TomoSAR case.

Within the TomoSAR context, the SURE technique consists
then in finding a value for ξ, which produces the minimum MSE
between the true complex reflectivity vector s in (1) and the
recovered one ŝ, approximated using (36).

F. Generalized Cross Validation

The previously addressed parameter selection criterion, along
with the Morozov’s discrepancy principle in (29), implies the a
priori knowledge of the Gaussian noise variance σ2; however,
this value is not always known. Under such circumstances, it is
better to make use of a different strategy. We recommend using

the GCV method instead, defined by [18, (1.9)]

η̂GCV (ξn) =
1
L‖(I−AF (ξn))y‖2[
1
L tr {I−AF (ξn)}

]2 ;n = 1, . . . , N. (37)

Similar to SURE in (36), GCV computes an estimate of the
MSE between the actual complex reflectivity vector s in (1) and
the retrieved signal ŝ, but without requiring knowledge of σ2.
Thus, ξ is chosen as the minimizer of (37).

Contrary to SURE in (36), the GCV technique is more depen-
dent on having a large number of passes L in order to retrieve
more accurate estimations of the MSE [18], such scenario is
typically not the case for the TomoSAR problem. Subsequently,
although both SURE and GCV have the same principle, they
may retrieve different MSE estimates, and as a result a different
ξ may be chosen. Also, although having a priori knowledge
on the noise variance is a noticeable advantage, the way that
Morozov in (29) and SURE in (36) handle this information, may
not be convenient for the TomoSAR case. Being TomoSAR a
highly ill-conditioned inverse problem, most of the perturbations
in the observed data are due to the formation of the received
signal, rather than due to the additive noise. Morozov and SURE
give more weight to the perturbations due to the additive noise:
Factor σ2 in (28) and (33) accounts for the noise variance only, it
does not gather significant information about the perturbations
due to the signal formation. Therefore, the respective retrieved
approximations may result misleading for the TomoSAR prob-
lem. Consequently, for practical scenarios, we expect a more
reliable behavior from those techniques which do not require of
σ2 as a priori information (i.e., the L-Curve and GCV), since
they extract all necessary information from the measurements
themselves, giving a better balance to all kind of perturbations.

V. SIMULATION RESULTS

This section analyses the capabilities of the treated parame-
ter selection criteria through simulations. The performance of
the addressed MOS rule is studied utilizing MUSIC (refer to
Table I), whereas the addressed strategies for choosing regular-
ization parameters make use of MARIA in (26).

As mentioned previously, parametric techniques as MUSIC
assume that the PSP is composed by a finite number of point-type
like backscattering sources. Therefore, due to the characteristics
of MUSIC, we refer to an urban like scenario, composed of
several point-type like targets. Keep in mind, however, that
MARIA is in principle also appropriate for scenarios composed
by distributed targets [3], [4].

The simulated tomographic acquisition geometry spans a
PLOS synthetic aperture of 70 m with L = 15 passes evenly
distributed. The considered L-band SAR sensor (0.23 m wave-
length) is assumed to be at a nominal altitude of 3000 m. We
consider a slant-range distance of about 4000 m between the
master track and the targets, meaning a Fourier resolution [8] of
about 6 m.

The MUSIC and MARIA focusing techniques are applied on
simulated sample covariance matrices Y, constructed as in (4)
for J = 250 independent looks (see Fig. 1). The data covari-
ance matrices Y gather the echoes coming from the scatterers
displaced along the PLOS height direction. We consider four
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Fig. 1. Distribution among J = 250 looks of 5 point-type like targets displaced along the PLOS height direction. Each target is composed of 100 scatterers
following a Gaussian distribution, with phase center (mean) located at ż1 = −2 m, ż2 = 0 m, ż3 = 3 m, ż4 = 6 m, and ż5 = 7 m, respectively, and spread
(standard deviation) of 0.01 m.

TABLE II
CASES OF STUDY

cases of study, each one with different number of targets, as
specified in Table II. For the aim of this work, we denote as
phase centers to the mean heights of the multiple backscattering
sources. Accordingly, each target in Table II is composed of 100
scatterers with equal reflectivity, following Gaussian distribu-
tions with phase-centers (means) placed as indicated in Table II.
For all targets, a narrow spread (standard deviation) of 0.01 m is
settled. The reason of using Gaussian distributions to simulate
the backscattering responses is twofold.

1) The location of the phase-centers matches the mean val-
ues.

2) The scatterers composing each Gaussian distribution fluc-
tuate randomly for each independent look (see Fig. 1),
adding statistical uncertainty to the measurements. In this
way, we do not only depend on the additive noise to
introduce decorrelation.

MUSIC usually assumes that the number of point-type like
targets, composing the PSP, is much smaller than the number of
passes L [1, Ch. 5]. Consequently, we set a limit of five targets
for the simulations.

Fig. 2 presents the true (theoretical) PSP for the fourth case
of study in Table II (blue) and the recovered PSP after applying
matched filtering on the simulated data (red). The expected
PSP for the other cases of study can be inferred from the blue
plot, removing the corresponding targets. Observe that only two
phase-centers are detected via matched filtering. The locations
of the point-type like targets (along the PLOS height direction) is
chosen with the aim of demonstrating the super resolution capa-
bilities of MUSIC and MARIA, in contrast to matched filtering.
The targets are placed close to each other and unevenly spaced,
with the objective of stressing these methods out. Particularly,
the last two targets are more difficult to discriminate due to their
close proximity.

The quality of the retrieved solutions, after focusing, is quan-
tified using three metrics.

Fig. 2. Blue: Expected PSP for the fourth case of study in Table II. Red:
Retrieved PSP after applying matched filtering on the simulated data.

1) Detection Rate: It refers to the number of times that
the amount of phase centers is correctly recovered, with
respect to the expected quantity defined in Table II. For
such a purpose, we look for the local maxima above
a threshold value of 0.05 within the retrieved (0 to 1)
normalized pseudo-power. The reason to use a threshold
value is avoiding false detections.

2) RMSE: When the number of phase-centers is correctly
identified, the RMSE between the true locations ż (as
described in Table II) and the ones found ̂̇z is calculated,
via

RMSE
(
ż, ˆ̇z

)
=

√√√√√ I∑
i=1

(
żi − ˆ̇zi

)2

I
. (38)
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Fig. 3. Detection rate against SNR for the fourth case of study in Table II.
Each point in the plot is the average of 250 Monte Carlo simulations.

3) Fréchet Distance: When the number of phase centers is
correctly identified, we make use of the FD [32], [33],
to measure the similarity between the expected (theoret-
ical) PSP b and the recovered PSP b̂. The FD ranges
between zero and one; it equals zero when both sig-
nals are the exact same and goes up to one, depend-
ing on how different the signals are. We refer to the
algorithm in [33] to compute the FD: Let P and Q
be discrete polynomial curves; the respective discrete
sequence is expressed as P = (u1, . . . , uM ) and Q =
(v1, . . . , vM ). The coupling Ψ between P and Q is a
sequence (u1, v1), (u2, v2), . . . , (uM , vM ), which re-
spects the order of the points in P and Q. The length of
the coupling

� (Ψ) = max
i=1,...,M

� (ui, vi) (39)

is the length of the longest link in Ψ. Finally, the FD is
defined by

FD (P,Q) = min {� (Ψ)} . (40)

Fig. 3 depicts the detection rate against SNR for the fourth
case of study in Table II. Each point in the plot is the average of
250 Monte Carlo trials. Observe how the addressed techniques
converge to a higher detection rate as the SNR increases. All
methods have improved performance above 5 dB, consequently,
a SNR of 7 dB is considered in the simulations reported next.
The considered white noise power spectral density is assumed
to be known a priori.

In the following, two hundred and fifty Monte Carlo simula-
tions are conducted for each case of study in Table II, and for each
parameter selection criterion. In the case of MUSIC, we take into
account all possible model orders {n}N=L−1

n=1 , resulting in a total
of 250× (L− 1)× 4 = 14 000 executed simulations. The idea
is to compare the performance of MUSIC for all model orders
and to observe which model orders are the most suitable ones.
In order to reconstruct the PSP along the PLOS height direction
in detail, we make use of M = 150 samples within the PLOS
height range from −5 to 10 m.

Figs. 4 and 5, and Table III present the compendium of the
results gotten from all simulations. The colored matrices in Fig. 4
correspond to MUSIC, they are read row by row, one case of

study at a time, comparing the measurements obtained for all
(L− 1) model orders. The color bars at right hand indicate the
attained values with respect to the specified metric: 1) Detection
rate, 2) average RMSE, and 3) average FD. Note that we use
different colors in every graphic, with the aim of making the
transitions more notorious. In Fig. 3(b) and (c), we set to one
those model orders that have a detection rate of 0% for a given
case of study. Note that this circumstance makes the computation
of the RMSE, as defined in (38), unfeasible.

The curves superimposed onto each row of the colored ma-
trices in Fig. 4, show the percentage of times that the treated
MOS rule [i.e., KL in (22)] chose a particular model order for
the given case of study. The summation of all the percentages
along each row equals 100%. By instance, KL chose the sixth
model order about 10% of the times, for the fourth case of study.

Fig. 5 depicts the superimposed vertical profiles of the re-
trieved PSP, organized per case of study and per parameter
selection strategy. For completeness, Table III presents the detec-
tion rate, average processing time, average RMSE and average
FD, attained by each treated parameter selection criterion. The
corresponding measurements are gotten after normalizing (from
0 to 1) both curves, the reconstructed PSP and the expected PSP,
since MUSIC and MARIA, as most super resolution techniques,
do not preserve radiometric accuracy.

A. Results Obtained by MUSIC

Observe in Fig. 4 that, excluding the two largest model orders,
those model orders above five achieve satisfactory measure-
ments. In contrast, the model orders lower than the expected
number of targets attain poor results. Note also that the best
choice corresponds to the expected number of targets.

As discussed previously in Section III, KL tends to select
models with a high order, since it does not have a penalty term
to prevent this. However, the model orders which are relatively
higher than the most proper one (i.e., the expected number of
targets) also tend to retrieve good-fitted solutions.

Generally, the model orders below the expected number of
targets cause underfitting. On the other hand, excluding the
fourth case of study, the model order immediately above the
expected number of targets normally cause overfitting. This
means that the probability of error increases within this range of
values, since the only admissible choice is the expected number
of targets.

Consequently, seeking a better performance for KL, we rec-
ommend restricting the lower limit of the range of possible
model orders. For the given simulations, we consider only
those model orders above five as possible options for KL. This
setting helps achieving better overall measurements, especially
in regard to the detection rate, improved by about 10 % in our
case. We set the lower limit to five, since it is the maximum
expected number of targets among all cases of study and most
of the model orders above retrieve satisfactory measurements.
However, this setting has the drawback of removing plausible
options for the cases of study with fewer targets (less than five
targets). The latter may translate into attaining worse detection
rates for such cases of study, as confirmed in Table III.
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Fig. 4. Colored matrices are read row by row, one case of study at a time, comparing the measurements obtained for all (L− 1) model orders. The color bars at
the right hand side indicate the attained values with respect to the specified metric. (a) Detection rate. (b) Average RMSE. (c) Average FD. The curve superimposed
onto each row of the colored matrices, show the percentage of times that the MOS rule (i.e., KL) chose a particular model order for the given case of study. The
summation of all the percentages along each row equals 100%.

Removing the two largest model orders also helps accom-
plishing a better performance, since they retrieve poorer mea-
surements. Nevertheless, restricting the lower limit is more
important. The reported results in Table III show that, even when
the largest model orders are included, the treated MOS rule
performs successfully. MUSIC, in Table I, attains a detection
rate above 85% and an average RMSE below 0.15 m in all
cases of study, which demonstrates the high accuracy achieved
when KL in (22) is incorporated to MUSIC and the lower
limit is restricted. The FD augments in the cases of study with
more targets; this is expected, since the more elaborated the

PSP is the more challenging it is to estimate. The reported
average processing time (of about 1 s) is gotten after processing
all possible (L− 1) model orders, necessary to construct the
colored matrices in Fig. 4. This value is reduced by shortening
the model orders’ range.

B. Results Obtained by MARIA

As observed in Fig. 5, MARIA clearly achieves finer reso-
lution in comparison to MUSIC, but requiring, in most cases,
more processing time, as verified in Table III. All addressed



MARTÍN-DEL-CAMPO-BECERRA et al.: PARAMETER SELECTION CRITERIA FOR TOMO-SAR FOCUSING 1591

Fig. 5. Superimposed vertical profiles of the retrieved PSP. From left to right: First, second, third, and fourth case of study, as in Table II. We apply MUSIC
to perform focusing after incorporating the treated MOS rule (a) KL, whereas, we make use of MARIA for the same purpose, but incorporating the addressed
strategies for choosing regularization parameters: (b) Morozov, (c) L-Curve, (d) SURE, and (e) GCV.
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TABLE III
SIMULATION RESULTS1, 2

1From left to right: first, second, third and fourth case of study. 2The average processing time refers to the retrieval of a single vertical profile; the computations are
performed in an Intel Xeon Gold 6154 CPU at 3.70 GHz, using a single thread.

parameter selection criteria (i.e., Morozov, L-Curve, SURE,
and GCV) are a posteriori; they require of a collection of test
values {ξn}Nn=1 in order to pick an adequate regularization
parameter. This explains the higher processing time, besides
that MARIA is an iterative method. In the reported simulations,
we set to 10 the maximum number of iterations that MARIA
can reach. In the case of SURE and GCV, we define a search
range from 10−1 to 10−9, whereas for the L-Curve from 10−1

to 10−8, and for Morozov from 101 to 10−8. The different
search ranges are defined seeking to attain the best overall
performance.

The L-Curve method chooses ξ as the regularization param-
eter found as near to the corner as possible along the curve
constructed from (30). With the aim of finding this position,

we utilize the search algorithm proposed in [29]. To better
understand how the algorithm works, we present an example
in Fig. 6, gotten from a single realization of the fourth case of
study in Table II. Observe that the location of the L-Curve’s
corner in Fig. 4(a) corresponds to the largest positive curvature
in Fig. 4(b), calculated via (31). Such search algorithm reduces
considerably the amount of test values {ξn}Nn=1, attaining less
computation time in contrast to SURE and GCV.

In order to select a proper value for ξ automatically, not in a
graphical manner, the use of a search algorithm is indispensable
for the L-Curve method. This is not the case for Morozov,
SURE, and GCV, which only involve finding a minimum value.
Nevertheless, the results gotten for the L-Curve confirm the
advantages of utilizing a search algorithm. Consequently, we
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Fig. 6. (a) L-Curve’s corner location using the golden section search algorithm described in Section IV. (b) Curvature value associated to the retrieved position.

Fig. 7. Frequency of selection for ξ among the different possible assigned values and for each case of study in Table II: (a) First, (b) second, (c) third, and (d)
fourth case of study.

employ the golden search algorithm [31] in the other three
competing strategies. Different search algorithms (e.g., bisection
search [31], line search [34], polynomial-based techniques [31],
etc.) could be specifically adapted to Morozov, SURE, and
GCV in order to accomplish a better performance, e.g., less
computation time. However, this subject is out of the scope of the
article, since it requires of dedicated work. The main goal of the
article is providing a methodology explicitly adapted to tackle
with the TomoSAR problem. More efficient implementations of
this methodology are to be addressed in the future.

Morozov in (29) selects a proper value of ξ without computing
the PSP [necessary to construct the solution operator FBMR in

(27)], being, due to this reason, faster than the other competing
techniques. As observed in Table III, all parameter selection
criteria perform satisfactory for the first, second, and third cases
of study in Table II. The main differences between strategies
take place in the fourth case of study. Morozov appears as
the less reliable technique, whereas the L-Curve, SURE, and
GCV are just as reliable. Take into account, nonetheless, that
using different search ranges, may enhance the performance of
Morozov.

As observed in Fig. 7, all treated parameter selection strategies
tend to choose different values of ξ among simulations. This
means that MARIA is sufficiently robust to correctly solve
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Fig. 8. SLC SAR image of the test site in Munich, Germany, 2015 (near range on top). The colors correspond to the channels HH (red), VV (blue), and HV
(green).

the TomoSAR problem using different values of ξ. Yet, the
regularization parameter must not be arbitrarily chosen. Not all
values of ξ are adequate for MARIA, as we can confirm in the
fourth case of study in Table III.

The TomoSAR problem is defined within the DOA estimation
theory. Therefore, the principal goal of MARIA, together with
the incorporated parameter selection criteria, is to accomplish
satisfactory detection rates and RMSE measurements. As ver-
ified in Table III, these values are consistent among methods.
However, different regularization parameters make MARIA re-
trieve different values of pseudo-power. This behavior is more
notorious for GCV, in the second and third cases of study, as
observed in Fig. 5 and through the reported FD in Table III.
This means that, although MARIA is able to correctly solve the
TomoSAR problem using different regularization parameters,
they lead to different physical interpretations, i.e., a different
attained pseudo-power.

As seen in Fig. 5, after convergence (or by reaching the
maximum number of iterations i = I) MARIA recovers sparse
vertical profiles. A solution operatorF[i=I]

BMR in (27), which attains
this kind of results, may cause under/overfitted solutions when
applied to the addressed parameter selection tools. The PSP is
so refined that the approximations performed by the parameter
selection strategies may result highly inaccurate. To tackle with
this issue, it is advisable to rather employ a solution operator
FBMR constructed after the first iteration i = 1. In the reported
simulations, we apply Capon beamforming [1], [20], to provide
MARIA with the initial input to (26). Next, we make use of
the solution operator F[i=1]

BMR, gotten after the first iteration, to
compute the different parameter selection strategies. Later on,
after choosing ξ, MARIA is applied normally.

Finally, based on the explanations provided previously and
based on the reported simulations, we conclude the following.

1) The provided explicit implementations of the Morozov’s
discrepancy principle in (29), the L-Curve in (30), SURE
in (36), and GCV in (37) are suitable for the TomoSAR
problem.

2) MARIA tends to attain finer resolution with the L-Curve,
SURE, and GCV, in contrast to Morozov. Morozov re-
trieves a worse detection rate in Table III for the fourth
case of study in Table II, where the last two targets are
more difficult to discriminate due to their close proximity.

3) Morozov and SURE are only applicable when the noise
variance is known a priori, since it is required for their
computations. Conversely, L-Curve and GCV can be ap-
plied in a more general basis, as they do not require of
such information.

4) Although L-Curve and GCV retrieve similar metrics (i.e.,
detection rate, RMSE, and FD) in Table III, L-Curve
requires less computation time.

5) Taking the latter into consideration, we suggest using
L-Curve as the common standard for MARIA. However,
when the noise variance is known a priori, we recommend
using Morozov, which trades off a minor decrease in the
detection rate for much less processing time.

We make use of L-Curve for the experimental results reported
in Section VI, since we have no a priori knowledge on the noise
variance.

VI. EXPERIMENTAL RESULTS

In 2015, the UAVSAR system of the Jet Propulsion Labo-
ratory (JPL) and the National Aeronautics and Space Admin-
istration (NASA) was flown in order to acquire L-band fully
polarimetric TomoSAR data collections from Munich, the third
largest city in Germany [5], [35]. The utilized Gulfstream G-III
aircraft flew at a nominal altitude of 12.5 km with a swath of
22 km and length of 60 km. The incidence angles range from
25◦ to 65◦. For the specified microwave frequency band, with
0.24 m wavelength and 80 MHz chirp bandwidth, the resultant
SLC imagery has a resolution of 1.66 m in range and 0.8 m
in azimuth. Fig. 8 shows one SLC image out of the stack; the
presence of radio frequency interference is due to the several
external sources, by instance, those coming from the Munich’s
airport.

The TomoSAR acquisition geometry consists of seven passes
at different altitudes, as specified in Table IV. These were
completed on a heading of 193°. The expected vertical Fourier
resolution is of about 2.8 m in the near range and of about 6 m
in the far range.

For demonstration purposes, we define the area where the
Maximilianeum edifice is located as our ROI. Fig. 9 shows
the corresponding intensity images, with respect to the master
track, for all polarizations (HH, HV, and VV). The azimuth
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Fig. 9. Quick look intensity images of the ROI for all polarizations. (a) HH. (b) HV. (c) VV. The ROI is specified through a red rectangle, whereas the tomograms
presented afterward correspond to the red line crossing the ROI.

Fig. 10. (a) Google Earth image of the test region, where the Maximilianeum building is located. (b) Polarimetric SLC SAR image of the test area [the colors
correspond to the channels HH (red), VV (blue), and HV (green)]. (c) Front view of the Maximilianeum edifice (Google Earth), specifying the height of the
structures that constitute it.
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Fig. 11. HH tomograms retrieved from the area depicted by the red line crossing the ROI specified in Fig. 9. We perform focusing using (a) matched filtering,
(b) MUSIC + KL, and (c) MARIA + L-Curve.

TABLE IV
TOMOSAR ACQUISITION GEOMETRY

and range indices are displayed, acting as a guide to identify
the azimuth and range bounds of the ROI, which is specified
through a red rectangle. Note that the Maximilianeum is oriented
practically parallel to the flight direction. The tomograms pre-
sented afterward refer to the red line crossing the ROI, spanning
about 160 m along azimuth. Fig. 10(a) shows the Google Earth
image of the test region, whereas Fig. 10(b) shows the respective
polarimetric SLC SAR image [the colors correspond to the
channels HH (red), VV (blue), and HV (green)]. Fig. 10(c)

specifies the height of the different structures constituting the
Maximilianeum. The tomographic slices presented afterward
correspond to this edifice.

Multilooking is performed on the set of data covariance ma-
trices through Boxcar filtering, using a 5× 10 (range/azimuth)
pixel window. As a reference, we first apply matched filtering to
focus the multilooked TomoSAR data, i.e., b̂ = {A+YA}diag
[4]. The resultant tomograms are presented in Figs. 11(a), 12(a),
and 13(a), for polarizations HH, HV, and VV, correspondingly.
The several structures constituting the edifice in Fig. 10(c)
are distinguished, by instance: the two towers at the extremes,
both wings (one at each side) and the central building. Con-
versely, observe the presence of ambiguities above and below
the building; these are more notorious in Fig. 11(a), between
the range from 40 to 65 m and between the range from 0 to
−20 m, along the PLOS height axis. The low resolution, along
with the presence of ambiguity, hampers the interpretation of
the results.

Subsequently, we retrieve the tomographic slices from the ex-
act same region as in Fig. 9, but using MUSIC+KL and MARIA
+ L-Curve instead. These results verify their feature enhancing
capabilities, namely, suppression of artifacts, ambiguity levels
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Fig. 12. HV tomograms retrieved from the area depicted by the red line crossing the ROI specified in Fig. 9. We perform focusing using (a) matched filtering,
(b) MUSIC + KL, and (c) MARIA + L-Curve.

reduction, and increased resolution. In order to better appreciate
such capabilities, and since most super resolution techniques
(e.g., MUSIC and MARIA) do not preserve radiometric accu-
racy, all tomograms shown hereafter are normalized with respect
to the (pseudo) power recovered using matched filtering, which
is known to be more accurate in this aspect. The tomographic
slices are presented in a dB scale, where 0 dB refers to the peak
obtained with matched filtering.

Figs. 11(b), 12(b), and 13(b) show the tomograms recovered
using MUSIC for polarizations HH, HV, and VV, respectively.
We make use of KL in (22) to select the model orders. As
discussed in Section V, we remove the first (two) possible model
orders, such that KL mainly selects the larger model orders.
Fig. 11(c), 12(c), and 13(c) depict the tomograms obtained with
MARIA for polarizations HH, HV, and VV, correspondingly.
The L-Curve method is employed to select the involved reg-
ularization parameters. We use Capon beamforming [1], [20],
to retrieve the initial input to MARIA. In order to apply the
L-Curve technique, we refer to the solution operator F[i=1]

BMR in
(27) obtained after the first iteration. Later on, we refer to the
chosen ξ to compute MARIA normally.

Next, for an easy assessment, Fig. 14 presents the super-
imposed vertical profiles for each azimuth position within
the displayed tomograms; the (pseudo) power is presented in
a linear scale. Through the comparison between the recov-
ered tomograms and the corresponding superimposed vertical
profiles, we can observe that, as expected, MARIA attains finer
resolution than MUSIC; nonetheless, MARIA requires of more
computation time, as seen in Table V.

For comparison purposes, Table V includes the processing
time attained by MARIA for all related parameter selection
tools. The noise variance was set to an arbitrary value for those
techniques that require it. The reported measurements refer to
the time needed to process the entire ROI defined in Fig. 9.
Note that the computation time of MUSIC decreased drastically
with respect to the reported simulations, since only five possible
model orders are considered.

Fig. 15 depicts the renders of the area where the Maximilia-
neum edifice [Fig 10(c)] is located, obtained after applying the
addressed focusing techniques, namely, matched filtering, MU-
SIC and MARIA. The 3-D representation gathers 40 consecutive
tomograms, spanning a volume of 65× 190×60 m, as specified
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Fig. 13. VV tomograms retrieved from the area depicted by the red line crossing the ROI specified in Fig. 9. We perform focusing using (a) matched filtering,
(b) MUSIC + KL, and (c) MARIA + L-Curve.

TABLE V
PROCESSING TIME IN SECONDS1

1The computations are performed in an Intel Xeon
Gold 6154 CPU at 3.70 GHz, using four threads.

in Fig. 13. Proper histogram equalization has been performed,
in order to facilitate the identification of the different structures.

Most of the structures constituting the Maximilianeum in
Fig. 10(c), are sufficiently spaced to be discriminated via
matched filtering. Consider Figs. 11–13; taking matched

filtering as a reference, note that all of these structures remain in
the results gotten through MUSIC and MARIA; furthermore, no
additional (strange) structures have been added. Observe also
the resemblance between the tomograms recovered by MUSIC
and MARIA, both accomplish similar solutions, with MARIA
attaining finer resolution. Consequently, we can infer that both
MUSIC and MARIA, retrieve good-fitted reconstructions. The
main advantage of using MUSIC and MARIA in this case, has
to do with the reduction of the ambiguity levels and the retrieval
of refined solutions, which eases identifying the local maxima
and finding their locations. MARIA achieves better ambiguity
levels reduction than MUSIC; both techniques perform worse
for the VV polarization and better for the HH polarization.

The presented experimental results verify then the success-
ful implementation of the treated parameter selection criteria
(i.e., KL and L-Curve), specifically adapted to deal with the
TomoSAR problem. These parameter selection tools have been
respectively incorporated into two focusing techniques (i.e.,
MUSIC and MARIA), with the aim of demonstrating their
correct functioning. Yet, the addressed methodology can be
easily adapted to other focusing techniques, which require the
correct setting of their parameters.
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Fig. 14. Superimposed vertical profiles of the tomograms displayed in Figs. 11–13. (a) Matched filtering. (b) MUSIC + KL. (c) MARIA + L-Curve. From left
to right: HH, HV, and VV. The (pseudo) power is presented in a linear scale.

VII. CONCLUSION

Tackling the TomoSAR problem within the context of DOA,
allows using super resolved focusing techniques that achieve
suppression of artifacts and ambiguity levels reduction. This
methodology includes parametric techniques as MUSIC and ES-
PRIT, and iterative statistical regularization methods as MARIA.
Although these techniques offer attractive advantages, they de-
pend on the proper selection of their parameters to guarantee
best performance. Otherwise, there is risk of retrieving un-
der/overfitted solutions, distorting our perception of the actual
signal.

Several popular parameter selection strategies exist in the
literature. However, these criteria must be specifically adapted
to the particular problem. The TomoSAR nonlinear inverse
problem is especially challenging; the constraints on the number
of passes composing the acquisition geometry, along with the
large number of samples employed to describe the PSP (in order
to take full advantage of the super resolution capabilities of the
addressed focusing techniques) make the TomoSAR problem

highly ill-conditioned. Accordingly, the main contribution of
this article consists in providing the explicit implementations
of different parameter selection strategies, specifically adapted
to the TomoSAR case. For such a purpose, we refer to a MOS
rule, based on ML, to determine the model order of parametric
focusing techniques as MUSIC or ESPRIT. On the other hand,
we make use of strategies as the Morozov’s discrepancy princi-
ple, the L-Curve, SURE, and GCV for the proper selection of
regularization parameters, necessary for focusing techniques as
MARIA.

The ML method of parameter estimation, originally designed
to deal with linear problems, has been adapted to the TomoSAR
problem. Subsequently, a MOS rule, based on the KL informa-
tion criterion, is introduced.

The addressed strategies for choosing regularization
parameters are also originally designed for linear problems,
nonetheless, having a solution operator permits extending
them to tackle with the TomoSAR problem. The solution
operator allows solving both linear and nonlinear problems.
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Fig. 15. Renders of the area where the Maximilianeum edifice [Fig 10(c)] is located, obtained after applying: (a) Matched filtering, (b) MUSIC + KL, and (c)
MARIA + L-Curve. From left to right: HH, HV, and VV. The 3-D representation gathers 40 consecutive tomograms.

Therefore, the presented criteria for selecting regularization
parameters are only applicable to those focusing techniques
described through a solution operator, by instance, CLS and
MARIA. Two out of the four treated related tools, i.e., Morozov
and SURE, require the a priori knowledge of the noise
variance. The remaining two, i.e., L-Curve and GCV, acquire
all necessary information from the measurements themselves.
Morozov and SURE give more weight to the perturbations
due to the additive noise, rather than to those due to the signal
formation. Nevertheless, for the TomoSAR ill-conditioned
inverse problem, most of the perturbations in the observed data
are due to the formation of the received signal. Consequently,
for practical applications, we expect a more consistent behavior
from the L-Curve and GCV.

Contrary to the other tools, the L-Curve obliges using a
search algorithm to find a proper regularization parameter. For
such aim, we make use of a golden section search algorithm,
which estimates the local curvature of the L-Curve from three
sampled points. The processing time gotten for the L-Curve, in
contrast to SURE and GCV, confirm the advantages of utilizing
a dedicated search algorithm. Subsequently, we recommend
exploring the usage of dedicated search algorithms for the other
addressed parameter selection strategies. This subject, however,

is to be treated in the future, since it requires of dedicated
work.

The successful implementation of the treated parameter
selection criteria, is verified trough simulations and experimental
results. Relevant pointers and suggestions, consequence of the
gained experience, are provided. With the aim of demonstrating
a correct functioning, the addressed parameter selection
strategies have been respectively incorporated into two focusing
techniques (i.e., MUSIC and MARIA). Still, the addressed
methodology can be easily adapted to other focusing techniques,
which require the correct setting of their parameters. By instance,
after minor modifications, KL can be also incorporated into
ESPRIT, whereas, Morozov, the L-Curve, SURE, and GCV
can be incorporated into those techniques having a solution
operator.

The simulations and experimental results show that MARIA
achieves finer resolution than MUSIC, at the expense of a higher
processing time. The fact that MUSIC has a finite number of
possible model orders, defined by the number of passes, makes
it faster by nature. Generally, MUSIC retrieves satisfactory
results at a lower computational cost. Thus, depending on the
application, the user may select less processing time via MUSIC
or attaining finer resolution through MARIA.
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