Yao, Jing and Hong, Danfeng and Chanussot, Jocelyn and Meng, Deyu and Zhu, Xiao Xiang and Xu, Zongben (2020) Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution. In: 16th European Conference on Computer Vision, ECCV 2020, 12374, pp. 208-224. Springer. ECCV 2020, 2020-08-24 - 2020-08-27, online. doi: 10.1007/978-3-030-58526-6_13. ISBN 978-303058541-9. ISSN 0302-9743.
PDF
3MB |
Official URL: https://link.springer.com/chapter/10.1007/978-3-030-58526-6_13
Abstract
The recent advancement of deep learning techniques has made great progress on hyperspectral image super-resolution (HSI-SR). Yet the development of unsupervised deep networks remains challenging for this task. To this end, we propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet for short, to enhance the spatial resolution of HSI by means of higher-spatial-resolution multispectral image (MSI). Inspired by coupled spectral unmixing, a two-stream convolutional autoencoder framework is taken as backbone to jointly decompose MS and HS data into a spectrally meaningful basis and corresponding coefficients. CUCaNet is capable of adaptively learning spectral and spatial response functions from HS-MS correspondences by enforcing reasonable consistency assumptions on the networks. Moreover, a cross-attention module is devised to yield more effective spatial-spectral information transfer in networks. Extensive experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models, demonstrating the superiority of the CUCaNet in the HSI-SR application. Furthermore, the codes and datasets are made available at: https://github.com/danfenghong/ECCV2020_CUCaNet.
Item URL in elib: | https://elib.dlr.de/138974/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 7 October 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | 16th European Conference on Computer Vision, ECCV 2020 | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Volume: | 12374 | ||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-58526-6_13 | ||||||||||||||||||||||||||||
Page Range: | pp. 208-224 | ||||||||||||||||||||||||||||
Publisher: | Springer | ||||||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||||||
ISBN: | 978-303058541-9 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Coupled unmixing, cross-attention, deep learning, hyperspectral super-resolution, multispectral, unsupervised | ||||||||||||||||||||||||||||
Event Title: | ECCV 2020 | ||||||||||||||||||||||||||||
Event Location: | online | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 24 August 2020 | ||||||||||||||||||||||||||||
Event End Date: | 27 August 2020 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Liu, Rong | ||||||||||||||||||||||||||||
Deposited On: | 03 Dec 2020 16:46 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page