Yao, Jing und Hong, Danfeng und Chanussot, Jocelyn und Meng, Deyu und Zhu, Xiao Xiang und Xu, Zongben (2020) Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution. In: 16th European Conference on Computer Vision, ECCV 2020, 12374, Seiten 208-224. Springer. ECCV 2020, 2020-08-24 - 2020-08-27, online. doi: 10.1007/978-3-030-58526-6_13. ISBN 978-303058541-9. ISSN 0302-9743.
PDF
3MB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-030-58526-6_13
Kurzfassung
The recent advancement of deep learning techniques has made great progress on hyperspectral image super-resolution (HSI-SR). Yet the development of unsupervised deep networks remains challenging for this task. To this end, we propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet for short, to enhance the spatial resolution of HSI by means of higher-spatial-resolution multispectral image (MSI). Inspired by coupled spectral unmixing, a two-stream convolutional autoencoder framework is taken as backbone to jointly decompose MS and HS data into a spectrally meaningful basis and corresponding coefficients. CUCaNet is capable of adaptively learning spectral and spatial response functions from HS-MS correspondences by enforcing reasonable consistency assumptions on the networks. Moreover, a cross-attention module is devised to yield more effective spatial-spectral information transfer in networks. Extensive experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models, demonstrating the superiority of the CUCaNet in the HSI-SR application. Furthermore, the codes and datasets are made available at: https://github.com/danfenghong/ECCV2020_CUCaNet.
elib-URL des Eintrags: | https://elib.dlr.de/138974/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 7 Oktober 2020 | ||||||||||||||||||||||||||||
Erschienen in: | 16th European Conference on Computer Vision, ECCV 2020 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Band: | 12374 | ||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-58526-6_13 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 208-224 | ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||||||
ISBN: | 978-303058541-9 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Coupled unmixing, cross-attention, deep learning, hyperspectral super-resolution, multispectral, unsupervised | ||||||||||||||||||||||||||||
Veranstaltungstitel: | ECCV 2020 | ||||||||||||||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 24 August 2020 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 27 August 2020 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Liu, Rong | ||||||||||||||||||||||||||||
Hinterlegt am: | 03 Dez 2020 16:46 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags