DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Objekterkennung von Fahrbahnbegrenzungen für Reinforcement Learning basierte Pfadfolgeregelung

Ahmic, Kenan (2020) Objekterkennung von Fahrbahnbegrenzungen für Reinforcement Learning basierte Pfadfolgeregelung. Master's, Technische Universität München.

[img] PDF - Only accessible within DLR


The perception of the environment is a crucial task in autonomous driving and needs to be solved in real-time in order to enable a safe and efficient operation. Especially for the motion planning application of an autonomous vehicle, a precise model of the environment needs to be provided. In this thesis, a neural network-based path detection method is applied for the ROboMObil research vehicle of the German Aerospace Center. This setup enables the camera-based perception of path boundaries and sets the foundation for the real-time application of the ROboMObil’s path planning module. The experimental perception results on a German highway demonstrate that the path boundaries are detected precisely. Further, the motion of the vehicle needs to be controlled in a robust way once a path has been provided by the path planning module. In this thesis, an existing framework for the reinforcement learning based path following control (PFC) of the ROboMObil is extended by dynamics randomization, i.e. sampling different values of selected model parameters during the training, which enables the learning of robust agents. The simulation results show that PFC agents trained with randomized dynamics obtain a higher robustness against varying environmental conditions and model uncertainties.

Item URL in elib:https://elib.dlr.de/138881/
Document Type:Thesis (Master's)
Title:Objekterkennung von Fahrbahnbegrenzungen für Reinforcement Learning basierte Pfadfolgeregelung
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Ahmic, KenanKenan.Ahmic (at) dlr.deUNSPECIFIED
Date:31 October 2020
Refereed publication:No
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Number of Pages:69
Keywords:Objekterkennung, Reinforcement Learning, Pfadfolgeregelung
Institution:Technische Universität München
Department:Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space System Technology
DLR - Research area:Raumfahrt
DLR - Program:R SY - Space System Technology
DLR - Research theme (Project):R - Vorhaben Intelligente Mobilität (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of System Dynamics and Control > Vehicle System Dynamics
Deposited By: Winter, Christoph
Deposited On:02 Dec 2020 14:30
Last Modified:02 Dec 2020 14:30

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.