elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

From robots to brain circuits: Learning to harness elasticity for optimal motions

Stratmann, Philipp (2020) From robots to brain circuits: Learning to harness elasticity for optimal motions. Dissertation, Technical University of Munich.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Whenever a runner strikes the ground, the muscles and tendons deflect like springs and reuse the stored energy to push the athlete off the ground, thereby saving up to 84 % of the muscular energy consumption. In bionic research, roboticists increasingly replicate the elastic properties underlying the human motor performance. But the control of efficient elastic movements in changing environments is largely unknown in both robotics and neuroscience. Bionic approaches to this open question suffer from the difficult identification of functionally distinct circuits within the network of our 86 billion entangled neurons. The present dissertation fully reverses the bionic approach to explain how the human brain optimizes muscular forces under fast-changing conditions. For this endeavor, the highly interdisciplinary research first answers how the elastic dynamics of robots can be optimally harnessed and then discovers an analogous brain circuit in humans. Robotic simulations demonstrated that a fast, model-free controller coordinates multiple elastic joints as energy-efficiently as a slow, model-based optimal controller. In robotic experiments, the controller increased the amplitude of jumping by up to 67 %. While an analogous functionality would give the brain a substantial evolutionary benefit, it requires a neuronal mechanism that violates a fundamental neuroscientific consensus: that synapses can only adapt to information that is locally encoded by the pre- or postsynaptic neuron. Here, the consensus is refuted by a novel, experimentally verified model of a non-local adaptation mechanism. For its development, the robotic controller was used as a blueprint to rigorously unite scattered findings from experimental neuroscience and machine learning. In the resulting model, sensory input triggers the release of serotonin onto motor neurons. The serotonin modulates the output forces according to the same algorithm as the robotic controller. In the simple example of a runner whose knee is blocked by a splint, the model predicts that serotonin specifically suppresses knee muscles, contradicting the generally accepted idea that serotonin affects all limb muscles equally. To test this prediction, human subjects performed fast and strong motions under the precise guidance of a robotic device. The resulting serotonergic effect was quantified and confirmed that serotonin scales the forces of individual muscles to maximize the motion amplitude. The presented results provide roboticists with a modular controller to boost the energy efficiency of cutting-edge elastic robots. For neuroscientists, the new understanding of serotonergic effects may enhance the rehabilitation of paraplegics. While state-of-theart therapies substitute serotonin in diffuse ways, the discovered precise effects can be mimicked by electric stimulation and exoskeletons to speed up the gait of patients. These far-reaching implications reveal the large potential of reverse-bionics to predict and explain new neuronal mechanisms. The numerous controllers of biomimetic robots can thereby reduce the frequently raised problem that neuroscience is data rich but theory poor.

elib-URL des Eintrags:https://elib.dlr.de/138853/
Dokumentart:Hochschulschrift (Dissertation)
Titel:From robots to brain circuits: Learning to harness elasticity for optimal motions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stratmann, Philippphilipp.stratmann (at) dlr.dehttps://orcid.org/0000-0001-6791-9159NICHT SPEZIFIZIERT
Datum:August 2020
Referierte Publikation:Ja
Open Access:Nein
Seitenanzahl:179
Status:veröffentlicht
Stichwörter:Computational neuroscience, robotics, energy consumption, elastic motion.
Institution:Technical University of Munich
Abteilung:Department of Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Terrestrische Assistenz-Robotik (alt), R - Laufroboter/Lokomotion [SY]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Stratmann, Philipp
Hinterlegt am:03 Dez 2020 13:38
Letzte Änderung:03 Dez 2020 13:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.