Stiller, Dorothee and Wurm, Michael and Stark, Thomas and Angelo, Pablo and Stebner, Karsten and Dech, Stefan and Taubenböck, Hannes (2021) Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing. Journal of Transport and Land Use, 14 (1), pp. 777-803. University of Minnesota. doi: 10.5198/jtlu.2021.1855. ISSN 1938-7849.
![]() |
PDF
- Published version
3MB |
Official URL: http://jtlu.org/index.php/jtlu/article/view/1855/1571
Abstract
A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.
Item URL in elib: | https://elib.dlr.de/138834/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 6 July 2021 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Journal of Transport and Land Use | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||||||||||
DOI: | 10.5198/jtlu.2021.1855 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 777-803 | ||||||||||||||||||||||||||||||||
Publisher: | University of Minnesota | ||||||||||||||||||||||||||||||||
ISSN: | 1938-7849 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | urban spatial structure, built environment, 3D city model, land-use model, intra-urban population, data fusion | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, V - Transport und Klima (old) | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security Remote Sensing Technology Institute > Photogrammetry and Image Analysis Institute of Optical Sensor Systems > Security Research and Applications German Remote Sensing Data Center > Leitungsbereich DFD | ||||||||||||||||||||||||||||||||
Deposited By: | Stiller, Dorothee | ||||||||||||||||||||||||||||||||
Deposited On: | 07 Jul 2021 13:03 | ||||||||||||||||||||||||||||||||
Last Modified: | 05 Dec 2023 10:21 |
Repository Staff Only: item control page