elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detection of Undocumented Building Constructions from Official Geodata Using a Convolutional Neural Network

Li, Qingyu und Shi, Yilei und Auer, Stefan und Roschlaub, Robert und Moest, Karin und Schmitt, Michael und Glock, Clemens und Zhu, Xiao Xiang (2020) Detection of Undocumented Building Constructions from Official Geodata Using a Convolutional Neural Network. Remote Sensing, 12 (21), 3537_1-3537_21. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12213537. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
12MB

Offizielle URL: https://www.mdpi.com/2072-4292/12/21/3537

Kurzfassung

Undocumented building constructions are buildings or stories that were built years ago,but are missing in the official digital cadastral maps (DFK). The detection of undocumented buildingconstructions is essential to urban planning and monitoring. The state of Bavaria, Germany, uses twosemi-automatic detection methods for this task that suffer from a high false alarm rate. To solve thisproblem, we propose a novel framework to detect undocumented building constructions using aConvolutional Neural Network (CNN) and official geodata, including high resolution optical dataand the Normalized Digital Surface Model (nDSM). More specifically, an undocumented buildingpixel is labeled as “building” by the CNN but does not overlap with a building polygon of the DFK.The class of old or new undocumented building can be further separated when a Temporal DigitalSurface Model (tDSM) is introduced in the stage of decision fusion. In a further step, undocumentedstory construction is detected as the pixels that are “building” in both DFK and predicted resultsfrom CNN, but shows a height deviation from the tDSM. By doing so, we have produced a seamlessmap of undocumented building constructions for one-quarter of the state of Bavaria, Germany at aspatial resolution of 0.4 m, which has proved that our framework is robust to detect undocumentedbuilding constructions at large-scale. Considering that the official geodata exploited in this researchis advantageous because of its high quality and large coverage, a transferability analysis experimentis also designed in our research to investigate the sampling strategies for building detection atlarge-scale. Our results indicate that building detection results in unseen areas at large-scale can beimproved when training samples are collected from different districts. In an area where trainingsamples are available, local training sampless collection and training can save much time and effort.

elib-URL des Eintrags:https://elib.dlr.de/138620/
Dokumentart:Zeitschriftenbeitrag
Titel:Detection of Undocumented Building Constructions from Official Geodata Using a Convolutional Neural Network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Li, QingyuQingyu.Li (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shi, Yileiyilei.shi (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Auer, StefanStefan.Auer (at) dlr.dehttps://orcid.org/0000-0001-9310-2337NICHT SPEZIFIZIERT
Roschlaub, RobertBavarian Agency for Digitisation, High Speed Internet and Surveying, 80538 MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Moest, KarinBavarian Agency for Digitisation, High Speed Internet and Surveying, 80538 MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmitt, Michaelmichael.schmitt (at) hm.eduhttps://orcid.org/0000-0002-0575-2362NICHT SPEZIFIZIERT
Glock, ClemensBavarian Agency for Digitisation, High Speed Internet and Surveying, 80538 MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2020
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.3390/rs12213537
Seitenbereich:3537_1-3537_21
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:building detection; Convolutional Neural Network; deep learning; semantic segmentation; decision fusion
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Li, Qingyu
Hinterlegt am:30 Nov 2020 17:18
Letzte Änderung:25 Okt 2023 08:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.