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Abstract: Undocumented building constructions are buildings or stories that were built years ago,
but are missing in the official digital cadastral maps (DFK). The detection of undocumented building
constructions is essential to urban planning and monitoring. The state of Bavaria, Germany, uses two
semi-automatic detection methods for this task that suffer from a high false alarm rate. To solve this
problem, we propose a novel framework to detect undocumented building constructions using a
Convolutional Neural Network (CNN) and official geodata, including high resolution optical data
and the Normalized Digital Surface Model (nDSM). More specifically, an undocumented building
pixel is labeled as “building” by the CNN but does not overlap with a building polygon of the DFK.
The class of old or new undocumented building can be further separated when a Temporal Digital
Surface Model (tDSM) is introduced in the stage of decision fusion. In a further step, undocumented
story construction is detected as the pixels that are “building” in both DFK and predicted results
from CNN, but shows a height deviation from the tDSM. By doing so, we have produced a seamless
map of undocumented building constructions for one-quarter of the state of Bavaria, Germany at a
spatial resolution of 0.4 m, which has proved that our framework is robust to detect undocumented
building constructions at large-scale. Considering that the official geodata exploited in this research
is advantageous because of its high quality and large coverage, a transferability analysis experiment
is also designed in our research to investigate the sampling strategies for building detection at
large-scale. Our results indicate that building detection results in unseen areas at large-scale can be
improved when training samples are collected from different districts. In an area where training
samples are available, local training sampless collection and training can save much time and effort.

Keywords: building detection; Convolutional Neural Network; deep learning; semantic segmentation;
decision fusion

1. Introduction

The creation and maintenance of databases of buildings have numerous applications,
which involve urban planning and monitoring as well as three-dimensional (3D) city modeling.
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In particular, the complete documentation of buildings in official cadastral maps is essential to the
transparent management of land properties, which can guarantee the legal and secure acquisition of
properties. In Germany, the boundary of a building is acquired through a terrestrial survey by the
official authority and then a two-dimensional (2D) ground plan of buildings is documented in the
official cadastral map, which is known as the digital cadastral map (DFK).

However, due to the lack of information from owners about some building construction projects,
some building constructions are never recorded via terrestrial surveying and are thus missing in the
DFK. These building constructions are called undocumented building constructions, and include
both undocumented buildings and undocumented story construction. Undocumented buildings have
two types, old undocumented buildings and new undocumented buildings. Old undocumented
buildings are buildings that were constructed many years ago but never recorded in the cadastral
maps. New undocumented buildings are buildings that have only recently been erected. In this
regard, the building ground plans of both old and new undocumented buildings are missing in the
DFK. Both old and new undocumented buildings should be terrestrially surveyed by the official
authority, but they may only charge the terrestrial survey fee for new undocumented buildings, due to
Germany’s regulations. In undocumented story construction, there are some changes on site, such as a
newly built story or story demolition, that were not documented in the records of the official authority.
Undocumented story construction will not lead to changes in the DFK, but this information is crucial
to updating 3D building models. Therefore, collecting this undocumented building constructions is
necessary to continue and complete these databases.

The technologies of airborne imaging and laser scanning show great potential in the task of
building detection for nationwide 3D building model derivation [1,2]. The high resolution airborne
data sets make detailed analysis of the geospatial targets more convenient and efficient. In the past,
identifying undocumented buildings entailed a visual comparison of aerial images from different flying
periods with DFK, enabling a comprehensive and timely interactive survey of changes in buildings.
However, the visual interpretation of the aerial photos required a great amount of workforce and time.

In order to reduce the amount of work, two semi-automatic strategies are currently used by the
state of Bavaria, Germany for the detection of undocumented buildings: the filter-based method [3]
and the comparison-based method [4]. Both of these methods first detect buildings in remote sensing
data. In the filter-based method, various filters, including a height filter, color filter, noise filter,
and geometry filter, are applied to the data to detect the buildings. The comparison-based method
detects all buildings with the aid of heuristically defined threshold values for the colors of buildings in
the representative RGB color space and for the height in the Normalized Digital Surface Model (nDSM).
Then both methods overlay the building detection results on the DFK to identify undocumented
buildings. With the help of a Temporal Digital Surface Model (tDSM) derived from two Digital Surface
Models (DSMs) in different epochs, new undocumented buildings can be discriminated from old
undocumented buildings. Both methods are based on heuristic methods [3]. However, the heuristic
definition of threshold values is not standardized, and have to be determined individually for different
flight campaigns. Therefore, the data covering a large area cannot be processed in a uniform and
standardized manner. Moreover, there are many false alarms in the results obtained from these
two methods, where vegetation is frequently misclassified as buildings. For instance, the results
of undocumented buildings obtained from the filter-based method also involve isolated vegetation
(see Figure 1). In addition, these two methods do not provide any evidence of undocumented
story construction.
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Figure 1. Building detection results obtained from the filter-based method overlaid on the DFK (gray)
to identify undocumented buildings (blue).

Recently, deep learning methods such as the Convolutional Neural Network (CNN) have been
favored by the remote sensing community [5,6] in applications such as land cover classification [7,8],
change detection [9,10], multi-label classification [11,12], and human settlement extraction [13,14].
CNN comprises multiple processing layers, which can learn hierarchical feature representations from
the input without any prior knowledge. For the task of building detection from remote sensing
data, CNN has also proven to achieve remarkable performances that far exceed those of traditional
methods [15–17]. This is due to their superiority in generalization and accuracy without hand-crafted
features. A key ingredient of CNN is training data. The amount of training data can be reduced if
the pretrained transferable model is applicable in another unseen area [18], a property that is called
transferability [19,20]. However, due to the limited size and quality of existing publicly available data
sets, transferability cannot be well investigated in the task of building detection.

In this paper, our unique contributions are three-fold:

(1) A new framework for the automatic detection of undocumented building constructions is
proposed, which has integrated the state-of-the-art CNNs and fully harnessed official geodata.
The proposed framework can identify old undocumented buildings, new undocumented
buildings, and undocumented story construction according to their year and type of construction.
Specifically, a CNN model is firstly exploited for the semantic segmentation of stacked nDSM
and orthophoto with RGB bands (TrueDOP) data. Then, this derived binary map of “building”
and “non-building” pixels is utilized to identify different types of undocumented building
constructions through automatic comparison with the DFK and tDSM.

(2) Our building detection results are compared with those obtained from two conventional solutions
utilized in the state of Bavaria, Germany. With a large collection of reference data, this comparison
has statistical sense. Our method can significantly reduce the false alarm rate, which has
demonstrated the use of CNN for the robust detection of buildings at large-scale.

(3) In order to offer insights for similar large-scale building detection tasks, we have investigated the
transferability issue and sampling strategies further by using reference data of selected districts
in the state of Bavaria, Germany and employing CNNs. It should be noted that this work is in an
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advanced position to study the practical strategies for the task of large-scale building detection,
as we implement such high quality and resolution official geodata at large-scale.

The remainder of the paper is organized as follows: Related work is reviewed in Section 2.
The study area and official geodata utilized in this work are described in Section 3. Section 4 details
the proposed framework for the detection of undocumented building constructions. The experiments
are described in Section 5. The results and discussion are provided in Sections 6 and 7, respectively.
Eventually, Section 8 summarizes this work.

2. Related Work

2.1. Two Conventional Strategies for the Detection of Undocumented Buildings

In the state of Bavaria, Germany, there are two conventional strategies utilized to detect
undocumented buildings, the filter-based method [3] and the comparison-based method [4]. For both
methods, the detection of undocumented buildings is carried out by first detecting all buildings in
the remote sensing data and then identifying undocumented buildings within the DFK by overlaying
the results with the DFK. Finally, the detected undocumented buildings are separated into two
classes by introducing a tDSM, i.e., they are classified as old undocumented buildings and new
undocumented buildings.

The filter-based method detects buildings from remote sensing data based on multiple filters,
which include height, color, and geometric filters. Considering that buildings are elevated objects,
a “height filter” is first applied in an nDSM, in order to remove all points with height less than an
empirically determined threshold. Then, the second filter “color filter” takes the color values of
the individual points into account. It is assumed that all pixels belonging to the class “building”
are normally distributed in an individual color channels. Thus, the values of the individual color
channel from the TrueDOP for each building are calculated to derive a confidence range for the
buildings. If the color values of the examined pixel are beyond this confidence range, it will be
removed. The Normalized Difference Vegetation Index (NDVI) is then calculated to remove vegetation.
The third filter, the “noise filter”, is implemented by comparing its height with neighboring points in
a defined area. This is a further separation of those vegetation points. The last filter, the “geometry
filter”, recognizes buildings according to their area, the number of breakpoints, the ratio of area to
circumference, and elongation (angularity).

In the comparison-based method, all buildings at present are delineated by setting heuristic
threshold values based on color and height information. The building footprints from the DFK
are first intersected with the TrueDOP to derive the training areas of buildings. Then, the RGB
color values from the training areas are collected from the TrueDOP as a reference [4], where the
frequency and distribution of the individual RGB combination are utilized in order to separate
buildings from vegetation with an empirically chosen threshold. Finally, with the help of the
nDSM, incorrect classifications between buildings and other objects such as streets are avoided by an
empirically determined height threshold.

In order to minimize the incorrect detection of non-building cases that can be caused by the
height noise of the nDSM or by vegetation, the filter-based method utilizes “color filters” and
the comparison-based method exploits a RGB cube. However, aerial imaging is carried out with
different airplanes and opposite trajectory directions at different times and with different lighting
conditions, where the color channels for the same objects can also have varied values. The color
values for each individual building are also largely dependent on the amount of current sunlight.
Therefore, the confidence range or thresholds are not sufficient to identify buildings. For these two
methods, buildings can only be identified through different heuristic thresholds for different districts,
which is still not a fully automatic strategy. Furthermore, these two methods do not provide a more
detailed type of undocumented building construction case–undocumented story construction.
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2.2. Shallow Learning Methods for Building Detection

Building detection is a favored topic in the remote sensing community. Over the past
decades, a large number of shallow learning methods have been proposed, which can be
summarized into four general types [15]: (1) edge-based, (2) region-based, (3) index-based,
and (4) classification-based methods.

The edge-based methods recognize the buildings based on geometric details of buildings.
In [21], the edges of buildings are first detected using the edge operator, and then are grouped
based on perceptual groupings to construct the boundary of the buildings. In the region-based
methods, the region of buildings is identified based on image segmentation methods, using a
two-level graph theory framework enhanced by shadow information [22]. The index-based methods
indicate the presence of buildings by a number of proposed indices to depict the building features.
The morphological building index (MBI) [23] is a building index that extracts buildings automatically,
and describes the characteristics of buildings by using multiscale and multidirectional morphological
operators. In the classification-based methods, buildings are extracted by feeding the spectral
information and spatial features into a classifier to make a prediction. In [24], automatic recognition of
buildings is achieved through a Support Vector Machine (SVM) classification of a great quantity of
geometric image features.

The shallow learning methods have shown some good results in the task of building detection
by combining different spectral, spatial, or auxiliary information or assuming building hypotheses.
However, the prior information and hand-crafted features of shallow learning methods make it
difficult to achieve generic, robust, and scalable building detection results at large-scale. Moreover,
the optimization of parameters in the shallow learning-based methods also leads to inefficiency
in processing.

2.3. Deep Learning Methods for Building Detection

Recently, the emergence of deep learning methods, which are based on artificial neural networks,
have made strong contributions to the task of building detection. The use of multiple layers in the
network allows the automatic learning of representations from raw data. Prior information is not
required in deep learning methods for hand-crafted feature design, which indicates that deep learning
methods can generalize well over large areas. CNNs are deep learning architectures, that are commonly
used and have been exploited as a preferred framework for the task of building detection, as they
have demonstrated more powerful generalization capability and better performance than traditional
methods [25]. The task of building detection using CNNs is related to the task of semantic segmentation
in computer vision, which aims at performing pixel-wise labelling in an image [26]. This indicates
that a CNN can assign a class label to every pixel in the image. Different CNN architectures, such as
fully convolutional networks (FCN) [27] and encoder-decoder based architectures (e.g., U-Net [28],
SegNet [29] and others), are commonly used for the task of semantic segmentation, which outperform
shallow learning approaches marginally [30].

FCN is a pioneer work for semantic segmentation that effectively converts popular classification
CNN models to generate pixel-level prediction maps with the transposed convolutions. In [31],
the spectral and height information from different data sets are combined as the input for FCN to
generate building footprints. In addition to FCN, the encoder-decoder based architectures are another
popular variant. Spatial resolution has been gradually reduced for highly efficient feature mapping in
the encoder, while feature representations are recovered into a full-resolution segmentation map in
the decoder. In U-Net, the skip connections, which links the encoder and the decoder, is beneficial
to the preservation of the spatial details. Considering that the results of FCN-based methods are
sensitive to the size of buildings, the U-Net structure implemented in [32] increases scale invariance of
algorithms for the task of building detection. SegNet is another encoder-decoder based architecture,
where the max-pooling indices from the encoders are transferred to the corresponding decoders.
By reusing max-pooling indices, SegNet requires less memory than U-Net. In [25], SegNet is exploited
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to produce the first seamless building footprint map of America at the spatial resolution of 1 m.
Currently, FC-DenseNet [33] is a favoured method among different CNN architectures for the semantic
segmentation of geospatial scenes, and is superior to many other networks in accuracy [17,34] due to
its better feature extraction capability [16].

3. Study Area and Official GeoData

In our research, the study area covers one-quarter of the state of Bavaria, Germany (see Figure 2),
which includes 16 districts: Ansbach, Bad Toelz, Deggendorf, Hemau, Kulmbach, Kronach, Landau,
Landshut, Muenchen, Nuernburg, Regensburg, Rosenheim, Wasserburg, Schweinfurt, Weilheim,
and Wolfratshausen. Bavaria is a federal state of Germany located in the southeast of the country. It is
the state with the largest land area and the second most populous state in Germany. The 16 selected
districts include both urban and rural areas, where different types of buildings are covered.

Figure 2. (a) The location of the state of Bavaria, Germany, (b) The study sites in this research,
which cover 16 districts in the state of Bavaria, Germany.
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Four types of official geodata are used in this study: nDSM, tDSM, TrueDOP, and DFK. The sample
data sets are illustrated in Figure 3 and their related details are shown in Table 1. In the state of
Bavaria, Germany, aerial flight compaigns are acquired through both aerial photographs and Airborne
Laser Scanning (ALS). A regular point grid from ALS can be derived as the Digital Terrain Model
(DTM). The DSM is obtained from a point cloud generated from optical data with the dense matching
method [35]. The nDSM utilized in this research is a difference model between a current DSM at time
point 2 (year 2017) and the DTM of the scene, which highlights elevated objects above the ground,
such as buildings and trees. In this research, the tDSM is the difference model of two DSMs captured
at two time points, i.e., time points 1 (year 2014) and 2 (year 2017). The TrueDOP is an orthophoto
with RGB bands acquired in time point 2 (year 2017); ortho projection and geo-localization has been
achieved corresponding to the DSM. Thus, all buildings and elevated objects in TrueDOP lie in position
without geometric distortion. Each district is covered by a large number of tiles of TrueDOP, nDSM,
and tDSM, where each tile has a size of 2500 × 2500 pixel at 0.4 m. The DFK is the cadastral 2D ground
plan where the footprint of buildings is delineated. It is acquired via a terrestrial surveying in the
field with accuracy in the range of cm. One of the limitations of a publicly available data set is the
lack of high quality ground truth data [36], where inaccurate locations of building annotations lead
to the misalignment between the building footprint and the data used for analysis [37]. It should be
noted that, the DFK exploited as ground reference in our research is accurate: the buildings shown in a
TrueDOP coincide the corresponding building footprint in the DFK.

Figure 3. Sample data from (a) TrueDOP, (b) nDSM, (c) rasterized DFK, and (d) tDSM.

Table 1. Detailed information of data sets utilized in this research.

Data Set Temporal Information Spatial Resolution Size Channels

Normalized Digital Surface Model (nDSM) year 2017 0.4 m 2500 × 2500 1
Temporal Digital Surface Model (tDSM) from year 2014 to year 2017 0.4 m 2500 × 2500 1
Orthophoto with RGB bands (TrueDOP) year 2017 0.4 m 2500 × 2500 3

Digital Cadastral Map (DFK) year 2017 0.4 m 2500 × 2500 1
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4. Methodology

4.1. The Proposed Framework for the Detection of Undocumented Building Constructions

Undocumented building constructions comprise two cases: undocumented buildings and
undocumented story construction. Undocumented buildings are the buildings that exist in airborne
survey data (nDSM and TrueDOP), but are not recorded in the cadastral 2D ground plan (DFK).
Undocumented story construction represents buildings that exist in both airborne survey data (nDSM
and TrueDOP) and the cadastral 2D ground plan (DFK), but show a signal of height deviation in
the tDSM due to story buildup or demolition. We propose a framework to detect undocumented
building constructions that is able to identify both undocumented buildings and undocumented story
construction. This proposed framework is carried out based on CNN and decision fusion, and can be
implemented as a routine strategy in large-scale object detection works.

An overview of the proposed framework is illustrated in Figure 4. The framework proposed in
this study consists of three main tasks: (1) detection of undocumented buildings, (2) discrimination
between old and new undocumented buildings, and (3) detection of undocumented story construction.

Figure 4. Flowchart of the proposed approach for the detection of undocumented building constructions.

In the proposed framework, TrueDOP stacked with the nDSM are utilized as the two main
data sources in the first stage, building detection. These were chosen because that individual data
sources may lead to biased building detection results. In the TrueDOP, the buildings share very
similar spectral and texture characteristics with other areas, such as sidewalks. Moreover, varied light
intensities due to atmospheric and seasonal effects, as well as shadow, can result in the variation in the
appearance of buildings [38], which is largely dependent on the time of data acquisition. The nDSM
data derived from the DSM and ALS data can directly inference the scene geometry, avoiding the
influence of environmental variables. However, some issues emerge when relying solely on the
nDSM, including marked occluded surfaces and planar surfaces that are split up [36]. In this case,
buildings and other elevated objects above the ground can not be discriminated well by purely nDSM
methods. Therefore, in order to make full use of both data sets, we stack the TrueDOP and the nDSM
as input of the CNN model, which assigns the class label “building” or “non-building” to each pixel.
The undocumented building pixels can then be identified when we overlay the predicted results with
DFK, highlighting those pixels that are assigned the class label of “building” from the CNN model but
belongs to the “non-building” class in the DFK.
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In order to further distinguish between different types of undocumented buildings, the temporal
information is essential to identifying the time window of the constructions. In this regard, the tDSM,
which is the difference between two DSMs acquired at two time points, is introduced as an additional
source of information. New constructions can be identified with an empiric value (1.8 m) applied to the
tDSM, which indicates that there is a height deviation for this pixel within the period between
two time points (from year 2014 to year 2017 in this research). This is due to the fact that a
story or a building is usually higher than 1.8 m. If there is a height deviation within this period,
the obtained undocumented building pixels from the previous stage will be assigned to the class as
new undocumented building. It indicates that this undocumented building was constructed after
time point 1 (year 2014). Otherwise it will be assigned the class of old undocumented building,
which indicates that there was an undocumented building constructed before time point 1 (in this case,
the year 2014).

Another case of building construction that can lead to a height deviation in two DSMs, is the
undocumented story construction, which refers to story buildup or demolition on an existing building.
The predicted results from the CNN model are first overlaid with the DFK. When the pixel in both
data sources corresponds to the class “building” and if there is a height deviation identified in the
tDSM, this pixel is placed in the class of undocumented story construction.

4.2. A CNN Model for Building Detection

Considering that the spatial resolution of airborne data is relatively high, massive quantities of
data can be collected within the area of one-quarter of the state of Bavaria, Germany. CNNs, the most
favored methods for many large-scale tasks [39], are therefore implemented as the most essential part
of our proposed framework. FC-DenseNet is exploited as the base semantic segmentation network
for building detection in the proposed framework, the goal of which is to assign the class label of
“building” or “non-building” to each pixel.

Network Architecture

FC-DenseNet is also an encoder-decoder architecture, where the key ingredient is the DenseNet
block. DenseNet [40] is a network that has proven to achieve superior performance for scene
classification tasks [41]. In this regard, FC-DenseNet (see Figure 5) is proposed in [33], where the
DenseNet is extended to a fully convolutional network for semantic segmentation tasks. The DenseNet
block has introduced a new connective pattern between layers, where the input of each layer is all
preceding features, and the output features from this layer are then transferred to all subsequent
layers. Instead of ResNet [42], which combines features by summation, DenseNet combines features
using iterative concatenation. This provides a more efficient flow of information through the network.
The feature concatenation in the DenseNet block reuses all features, which makes the connections
within layers shorter. In this regard, the intermediate layers will be enforced to learn distinguished
feature maps for easier training. Another important design element of FC-DenseNet is the skip
connections [43] between the encoder and the decoder, where higher resolution information can be
passed. The spatial details can be well recovered in the decoder from the encoder with the help of the
skip connection.
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Figure 5. The implemented CNN architectures: FC-DenseNet.

5. Experiment

5.1. Data Preprocessing

The crucial element of our proposed framework is the CNN method that can predict buildings
at current state. Training data is essential for CNN learning, and thus all the official geodata are
preprocessed to collect training patches as input. DFK is provided as shape files, and first converted
to the raster format at 0.4 m, which is the same spatial resolution as TrueDOP, nDSM, and tDSM.
Then, all the tiles of TrueDOP, nDSM, and the DFK as corresponding ground reference are clipped
into patches with a size of 256 × 256 pixels, where each patch has an overlap of 124 pixels with its
neighboring patches.

Then, we collect the patches from 14 districts in the state of Bavaria, Germany, except the districts
of Bad Toelz and Nuernburg. And for each district among the 14 selected districts, we split the collected
patches into the train and validation subset. Table 2 shows the number of training and validation
patches for the 14 selected districts.

Table 2. The numbers of training and validation patches for the 14 selected districts.

District Number of Training Patches Number of Validation Patches

Ansbach 67,965 18,077
Wolfratshausen 14,982 3671

Kulmbach 24,998 5679
Kronach 19,987 5112
Landau 34,964 8733

Deggendorf 38,454 9763
Landshut 60,957 15,090
Muenchen 88,364 22,213

Regensburg 47,947 11,941
Hemau 9481 2243

Rosenheim 59,141 14,789
Wasserburg 14,150 3567
Schweinfurt 54,951 13,759

Weilheim 76,959 19,202
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5.2. Experiment Setup

Using the training and validation data collected from the 14 selected districts, we have firstly
trained a FC-DenseNet model to get building detection results. Then, with the aid of tDSM, we have
generated a seamless map of undocumented detection for one-quarter of the state of Bavaria, Germany.

To validate our building detection results, we choose the district “Bad Toelz” as the test area.
Firstly, we compare our results in the district of Bad Toelz with those obtained from two conventional
solutions (filter-based method and comparison-based method) utilized in the state of Bavaria, Germany.
Furthermore, we also make a comparison among different CNNs. Thus, we implement another
two commonly used networks (FCN-8s [27] and U-Net [28]) in the remote sensing community for
building detection.

As one contribution of our work, the transferability issues with training data from selected
districts around the state of Bavaria, Germany are explored. In this regard, transferability is examined
by training another FC-DenseNet model with the training and validation data only from the district of
Ansbach. Then we evaluate the two FC-DenseNet models on the districts of Bad Toelz and Nuernburg,
respectively. Note that the districts of Bad Toelz and Nuernburg are not included from the 14 selected
districts, which is helpful to investigate the transferability of these two trained models.

In order to investigate the sampling strategy in a local area where training samples are available,
we also test the two trained FC-DenseNet models on the district of Ansbach, since the district of
Ansbach is included in training and validation data of both trained models.

5.3. Training Details

In this study, all networks are applied under a Pytorch framework and trained for 100 epochs.
All models are trained from scratch by a stochastic gradient descent (SGD) optimizer with a learning
rate of 0.000001. The cross entropy loss is utilized as the loss function, and the batch size is 5. A Tesla
P100 GPU with 16 G memory is used to train our models.

The configurations of CNNs included in experiments are listed as follows;

(1) FC-DenseNet is composed of four DenseNet blocks in both encoder and decoder, and one
bottleneck block connecting them, which is also a DenseNet block. In each DenseNet block,
we utilize 5 convolutional layers.

(2) FCN-8s adopts a VGG16 architecture [44] as the backbone.
(3) U-Net is composed of five blocks in both the encoder and decoder. Each block in the encoder has

two convolution layers, and in the decoder it has one transposed convolution layer.

5.4. Evaluation Metrics

For building detection, the model performance is evaluated by calculating the accuracy metrics,
which include overall accuracy, precision, recall, F1 score, and intersection over union (IoU), which are
defined as:

Overall accuracy =
TP + TN

TP + FP + FN + TN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 score =
2 ∗ precision ∗ recall

precision + recall
(4)

IoU =
TP

TP + FP + FN
(5)

where TP (true positive) is the number of pixels correctly identified with the class label “building”,
FN (false negative) denotes the number of omitted pixels with the class label of “building”. FP (false
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positive) represents the number of “non-building” pixels in the ground reference, but are mislabeled
as “building” by the model. TN (true negative) is the number of the correctly detected pixels with
the class label of “non-building”. Precision denotes the fraction of identified “building” pixels that
are correct with ground reference, and recall represents how many “building” pixels in the ground
reference are correctly predicted. The F1 score denotes a harmonic mean between precision and recall.

6. Results

6.1. Results of Undocumented Building Constructions from Proposed Framework

In our research, we have generated a seamless map of undocumented building constructions for
one-quarter of the state of Bavaria, Germany. Due to the limited space, the zoom-in visual examples
of the large-scale undocumented building constructions can only be presented at block level here
(see Figure 6).

Figure 6. Zoomed-in results of undocumented building constructions for one-quarter of the state of
Bavaria, Germany at block level.
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To evaluate the undocumented detections in a more targeted manner, we collected all the
undocumented buildings in the district of Bad Toelz. Each undocumented building was reevaluated by
manual photo interpretation to determine the correctness. Among the 1545 undocumented buildings
from our results in the district of Bad Toelz, 1271 undocumented buildings were correctly detected.

A detailed visual analysis of undocumented building constructions in the district of Bad Toelz is
given as an example in Figure 7, including (a) old undocumented building, (b) new undocumented
building, (c) undocumented story construction. Note that the training data set excludes the data for
the district of Bad Toelz, but it can still provide satisfying results in this district. Case (a) represents old
undocumented buildings (green), which are clearly distinguishable in the TrueDOP and are shown
as elevated objects in the nDSM. However, they are not contained in the DFK. Considering that
no height deviation is present in the tDSM, these undocumented buildings belong to the class of
old undocumented building, which indicates that they were built before time point 1 (year 2014).
In case (b), a new undocumented building (red) is depicted well in our detection results. From the
TrueDOP and nDSM, it can be clearly seen that this is a building, however, it is not present in the DFK.
Since there is an obvious signal of height deviation from tDSM, this new undocumented building was
built in the period covered by the tDSM (from year 2014 to year 2017). For the undocumented story
construction illustrated in case (c), a strong signal of height deviation is present in the tDSM. This site
corresponds to a building that has been recorded in the DFK; thus, we can conclude that this height
deviation results from story buildup.

Figure 7. Example of detection results of undocumented building reconstructions for (a) old
undocumented building, (b) new undocumented building, and (c) undocumented story construction.
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6.2. Results of Building Detections from Proposed Framework

In our proposed framework, the module of CNN plays a vital role, and its performance
has an impact on the final undocumented building detections results. In order to evaluate the
CNN performance of the proposed framework, we compare our building detection results in the
district of Bad Toelz with those acquired from two conventional solutions (filter-based method and
comparison-based method) utilized in the state of Bavaria, Germany. A comparison among different
CNNs (FC-DenseNet, FCN-8s, and U-Net) is also presented in this section.

6.2.1. Comparison with Two Conventional Solutions

The visual building detection results from the proposed framework and two other conventional
solutions (the filter-based method and the comparison-based method) are shown in Figure 8.
For further verification, a statistical analysis of the results from these three methods on the district of
Bad Toelz is carried out (see Table 3). As a comparative measure, the F1 score is clearly more objective
here, since it takes both false alarms and omitted detections into consideration.

Figure 8. Building detection results from (a) filter-based method, (b) comparison-based method,
and (c) CNN model.
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Table 3. Statistical accuracy of building detection results among different methods.

Method Overall Accuracy Precision Recall F1 Score IoU

Filter-based method 97.6% 59.7% 82.3% 69.3% 53.0%
Comparison-based method 90.4% 24.1% 89.0% 37.9% 23.4%

CNN method 99.0% 84.6% 85.5% 85.1% 74.0%

For the filter-based method, the low precision rate results from some false detection. One reason
is that the nDSM naturally delivers all elevated objects, such as vegetation and trucks, in addition
to buildings. The other reason is that the color filter is mostly affected by aerial imaging conditions,
which means that vegetation can be also misclassified as buildings under some uncertainties.
Some omission errors in the results also reduce the recall value, which may be due to the confidence
intervals of the color filter. This interval may be insufficient to identify buildings, since the RGB values
for an individual building are significantly dependent on the amount of sunlight. In this case, there are
some buildings whose colors are in the peripheral areas, e.g., very bright white roofs or very dark
roofs, which can not be identified as buildings.

In the results obtained from the comparison-based method, the precision value is much lower
than the other two methods, which indicates that many non-building pixels are mislabeled as buildings.
After a further detailed visual check, we have found that there is a lot of confusion between trees
and buildings. Since some trees grow above the roofs, the RGB color cube in TrueDOP collected
from reference buildings also involve RGB color values of vegetation. In this regard, the reference for
buildings in the RGB color cube will be distorted by these vegetation components, and thus vegetation
can be wrongly classified as buildings. Moreover, the color values of vegetation and dark roofs are
also similar in shadow areas, which produces misclassifications between vegetation and buildings.

The CNN method yields the highest precision values, which indicates that it can suppress false
alarms well. The CNN model clearly outperforms the other two methods with respect to accuracy
(F1 score). This proves that, in a comparison of the building detectors examined, reliable building
detection and a good separation from vegetation are only possible with the CNN model. This is due to
the powerful generalization capability of CNNs, which are independent from prior knowledge and
hand-crafted features.

6.2.2. Comparison with Other CNNs

In order to compare with other CNNs, two networks including FCN-8s, and U-Net are also trained
with the training and validation samples collected from 14 districts. Their respective performance is
then tested on the district of Bad Toelz.

Statistical results of three networks are shown in Table 4. It is demonstrated that FC-DenseNet
outperforms other two methods in terms of both F1 score and IoU. Specifically, comparisons with
FCN-8s and U-Net, where FC-DenseNet obtain increments of 3.9% and 3.2% in F1 score, respectively,
validates its superiority in the task of building detection. Compared to U-Net, FC-DenseNet reaches
improvements of 3.2% and 4.6% in F1 score and IoU, which indicates that the DenseNet block is more
effective than the normal block.

Figure 9 shows a few examples of building detection results of three networks. In all these
three scenes, FC-DenseNet is able to capture more buildings, whereas U-Net and FCN-8s suffer
from more omission errors. This is mainly because, in FC-DenseNet, the DenseNet block reuses
features, which leads to a better judgment of buildings. Thanks to the architecture of skip connection,
FC-DenseNet is capable of preserving sharper building boundaries than FCN-8s.
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Figure 9. Three examples (a–c) represent the building detection results from three CNNs: FCN-8s,
U-Net, and FC-DenseNet.

Table 4. Statistical accuracy of building detection results among different CNNs.

Method Overall Accuracy Precision Recall F1 Score IoU

FCN-8s 98.8% 82.5% 80.1% 81.2% 68.4%
U-Net 98.8% 81.5% 82.3% 81.9% 69.4%

FC-DenseNet 99.0% 84.6% 85.5% 85.1% 74.0%

7. Discussion

The collection of training samples for large-scale building detection takes a large quantity of
time and manual work. Therefore, the investigation of transferability issues and sampling strategies
for building detection at large-scale is vital in practical use. In this regard, we have trained two
FC-DenseNet models with different training and validation sets, and named them as the trained
model 1 and 2, respectively. In the trained model 1, the training samples are only collected from the
district of Ansbach. In the trained model 2, the training samples are collected not only from the district
of Ansbach, but also another 13 districts.

7.1. Transferability Investigation

The transferability of trained models is examined by evaluating the performances of the two
trained models in the districts of Bad Toelz and Nuernburg, respectively. For both trained models,
neither training data nor validation data include the data from these two districts, which is considered
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as a more realistic test for the task of large-scale building detection, since training data can only be
collected from limited areas. Table 5 proves that the trained model 2 has superior transferability. In the
district Bad Toelz, F1 score and IoU of the trained model 2 shows a large improvement of 12.8% and
17.4% in comparison to the trained model 1, respectively. In the district of Nuernburg, the trained
model 2 surpasses the trained model 1 by 3.9% and 5.8% in the F1 score and IoU score, respectively.

Table 5. Accuracy of two different trained models evaluated in the districts of Bad Toelz and Nuernburg.

Trained Model Train and Validation District Test District Overall Accuracy Precision Recall F1 Score IoU

1 Ansbach Bad Toelz 98.2% 75.3% 69.4% 72.3% 56.6%
2 14 districts Bad Toelz 99.0% 84.6% 85.5% 85.1% 74.0%
1 Ansbach Nuernburg 92.4% 86.9% 78.0% 82.2% 69.8%
2 14 districts Nuernburg 94.6% 87.6% 84.7% 86.1% 75.6%

Some visual examples of these two trained models in the districts of Bad Toelz and Nuernburg
are illustrated in Figure 10 for comparison. The visual results are consistent with the statistical results
of Table 5, where the trained model 2 shows higher increments of precision and recall than the trained
model 1. This indicates that when the evaluation data is unseen by both the training and the validation
set, the optimal sampling strategy is to collect training data from different districts rather than from
only one. This improvement is due to the fact that the trained model 2 collects the training samples
from 14 different districts in the state of Bavaria, Germany, where the variety in the types of buildings
facilitates the learning of CNN. This again confirms that a diverse training set is beneficial to the
generalization capability of CNN. Since CNN is focused on learning location-specific building patterns,
a diverse training set can mitigate this effect and enable the CNN to learn more generic patterns,
where the semantic segmentation in an unseen area can be improved [45].

Figure 10. Two examples (a,b) represent the buildings detection results in the district of Bad Toelz
obtained from trained model 1 and trained model 2, respectively. Two examples (c,d) represent the
buildings detection results in the district of Nuernburg obtained from trained model 1 and trained
model 2, respectively.
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7.2. Sampling Strategy Investigation

In order to investigate the sampling strategy in a local area where training samples are available,
we test the two trained models on the district of Ansbach. This is due to the fact that the district of
Ansbach is included in both two trained models. The evaluation data in the district of Ansbach is the
same as the validation data in the trained model 1 (18,077 patches). Table 6 presents a comparison of the
statistical accuracy of two trained models. An interesting finding is that, statistical metrics of the two
trained models only show slight differences, which indicates that local training sample collection and
training can achieve comparative performance as collecting extensive training samples from different
districts. This is because training data in the trained model 1 share a similar data distribution with
evaluation data in the district of Ansbach, which can also lead to a good fit of the model. This provides
a sampling strategy in a local area where the training samples are available, so that we can just use
only local training samples to obtain the building detection results in this area rather than collecting
extensive training samples from multiple districts. This sampling strategy can save much more effort
and time in a local area with available training samples.

Table 6. Accuracy of two different trained models evaluated in the district of Ansbach.

Trained Model Train and Validation District Test District Overall Accuracy Precision Recall F1 Score IoU

1 Ansbach Ansbach 98.9% 90.9% 90.3% 90.5% 82.7%
2 14 districts Ansbach 98.8% 91.3% 89.3% 90.3% 82.3%

8. Conclusions

In order to ensure the transparent management of land properties, buildings as vital terrestrial
objects, need an official terrestrial survey to be documented in the cadastral maps. For this purpose,
we have proposed a framework for the detection of undocumented building constructions from
official geodata, which includes nDSM, TrueDOP, and DFK. Moreover, the proposed framework
categorizes detected undocumented building constructions into three types: old undocumented
building, new undocumented building, and undocumented story construction with the aid of tDSM.
This can contribute to the management of different construction cases.

Our framework is based on a CNN and decision fusion, and has shown greater potential for
updating the building model in geographic information system than two strategies used so far in the
state of Bavaria, Germany.

We investigated the transferability issue and sampling strategies for building detection at
large-scale. In an unseen area, the model that collects diverse training samples from multiple districts
has better transferability than the model that collects training data from only one district. However, in a
local area where training samples are already available, the local samples collection and training can
achieve comparative performance as the model that collects extensive training samples from different
districts. These practical strategies are beneficial to other large-scale object detection works that use
remote sensing data.

Furthermore, the seamless map of undocumented building constructions generated in our research
covers one-quarter of the state of Bavaria, Germany at a spatial resolution of 0.4 m, and is beneficial to
efficient land resource management and sustainable urban development.
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