Staab, Jeroen and Udas, Erica and Mayer, Marius and Taubenböck, Hannes and Job, Hubert (2021) Comparing established visitor monitoring approaches with triggered trail cameras images and machine learning based computer vision. Journal of Outdoor Recreation and Tourism (35), pp. 1-15. Elsevier. doi: 10.1016/j.jort.2021.100387. ISSN 2213-0780.
PDF
- Published version
8MB |
Official URL: https://www.sciencedirect.com/science/article/abs/pii/S2213078021000232
Abstract
The management of protected areas and other recreational landscapes is subject to a variety of challenges. One aspect hereof, visitor monitoring, is crucial for many management and valuation tasks of ecosystem services. Its core data are visitor numbers which are costly to estimate in absence of entry fees for protected areas or recreational landscapes. Camera-based approaches have the potential to be both, accurate and deliver comprehensive data about visitor numbers, types and activities. So far, camera-based visitor monitoring is, however, costly due to time consuming manual image evaluation. To overcome this limitation, we deployed a convolutional neural network and compared its hourly counts against existing visitor counting methods such as manual in-situ counting, a pressure sensor, and manual camera image evaluations. Our study is the first one to implement, and explicitly assess the performance of a computer vision approach for visitor-monitoring. The results showed that the convolutional neural network derived comparable visitor numbers to the other visitor counting approaches regarding visitation patterns and numbers of visits. Further, our approach also allowed for counting dogs and recreational equipment such as backpacks and bicycles in automatic manner. We thus conclude that it is a fast and reliable method that could be used in protected areas as well as in a much wider array of visitor counting settings in other recreational landscapes.
Item URL in elib: | https://elib.dlr.de/138592/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Comparing established visitor monitoring approaches with triggered trail cameras images and machine learning based computer vision | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | September 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | Journal of Outdoor Recreation and Tourism | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1016/j.jort.2021.100387 | ||||||||||||||||||||||||
Page Range: | pp. 1-15 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 2213-0780 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | visitor monitoring; computer vision; convolutional neural network; camera; protected areas | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Staab, Jeroen | ||||||||||||||||||||||||
Deposited On: | 01 Dec 2020 08:49 | ||||||||||||||||||||||||
Last Modified: | 01 Nov 2023 03:00 |
Repository Staff Only: item control page