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A B S T R A C T   

The management of protected areas and other recreational landscapes is subject to a variety of challenges. One 
aspect hereof, visitor monitoring, is crucial for many management and valuation tasks of ecosystem services. Its 
core data are visitor numbers which are costly to estimate in absence of entry fees for protected areas or rec-
reational landscapes. Camera-based approaches have the potential to be both, accurate and deliver compre-
hensive data about visitor numbers, types and activities. So far, camera-based visitor monitoring is, however, 
costly due to time consuming manual image evaluation. To overcome this limitation, we deployed a convolu-
tional neural network and compared its hourly counts against existing visitor counting methods such as manual 
in-situ counting, a pressure sensor, and manual camera image evaluations. Our study is the first one to imple-
ment, and explicitly assess the performance of a computer vision approach for visitor-monitoring. The results 
showed that the convolutional neural network derived comparable visitor numbers to the other visitor counting 
approaches regarding visitation patterns and numbers of visits. Further, our approach also allowed for counting 
dogs and recreational equipment such as backpacks and bicycles in automatic manner. We thus conclude that it is 
a fast and reliable method that could be used in protected areas as well as in a much wider array of visitor 
counting settings in other recreational landscapes. 
Management implications: Managers of protected and recreational areas could benefit from our comparisons of 
convolutional neural network camera image evaluations with existing visitor counting approaches as:  

• Time-consuming manual image evaluation can be replaced by computer vision approaches based 
on convolutional neural networks (40 h to manually analyze more than 13,000 images by one 
expert vs. 10 h to do it automatically in the background).  

• In contrast to pressure sensors, this approach also allows to differentiate visitor types and activities 
(dog-walking, cycling, etc.) at comparably low-costs.  

• Future efforts should concentrate on training specific convolutional neural networks dedicated to 
visitor monitoring in recreational settings which could process imagery at real-time in the field 
using single-board computers.  

• Nevertheless, this approach is prone to the usual disadvantages of camera-based visitor monitoring 
(risks of theft, vandalism, malfunctioning; data security issues), which need to be considered when 
setting up the device.   
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1. Introduction 

Protected areas are a major destination for outdoor recreation 
(Balmford et al., 2015; Schägner et al., 2018). Along with fostering 
physical health and mental well-being (Rathmann et al., 2020; Taye 
et al., 2019), outdoor recreation also generates considerable economic 
impacts and job opportunities (Highfill & Franks, 2019; Job, Merlin, 
Metzler, Schamel, & Woltering, 2016; Mayer et al., 2010). Although the 
importance of outdoor recreation is generally well recognized, when it 
comes to concrete land-use decision making, it is necessary to provide 
clear evidence of an area’s relevance to recreational services (and other 
related ecosystem services). In this context, accurate visitor numbers 
have been concluded to be the most important parameter in economic 
impact and recreational value modelling of protected areas (Woltering, 
2012; Mayer & Woltering, 2018; Schägner et al., 2017, 2018). Further, a 
comprehensive visitor monitoring system is relevant for developing 
personnel deployment plans, targeted visitor information and marketing 
measures (Arnberger et al., 2016; Ziesler & Pettebone, 2018), to 
improve recreation opportunities (Ankre et al., 2016), to assess the 
ecological carrying capacities of protected areas and recreational land-
scapes (Cessford & Muhar, 2003; Ziesler & Pettebone, 2018), to analyze 
the influence of weather, exchange rate and media coverage variations 
(Millhäusler et al., 2016) as well as for informed visitor management 
avoiding potential conflicts (Ankre et al., 2016; Job, Schamel, & Butz-
mann, 2016; Rupf et al., 2014) and crowding (Schamel & Job, 2013). 
However, in most European countries like Germany or Sweden and 
elsewhere e.g. New Zealand too, there are open access policies govern-
ing protected areas, so that, for example, visitor data cannot be derived 
from entrance fees (Hannemann & Job, 2003). Therefore, a plethora of 
visitor monitoring approaches like field observations and mechanical 
counters exist (see review by Cessford & Burns, 2008). 

Nevertheless, all approaches have specific pros and cons, which must 
be considered according to the individual case, local circumstances (e.g. 
pathway layout), legal requirements, financial restrictions and meth-
odological competences (Hornback & Eagles, 1999; Muhar et al., 2002; 
Cessford & Muhar, 2003; Kajala et al., 2007; Arnberger, 2007; Spenceley 
et al., 2021 for a recent overview). For example, direct observation by 
trained staff in the field can distinguish walking directions, recognize 
sport equipment and can be combined with conducting interviews. 
However, as human resources are expensive, full-time counting is 
practically impossible and thus, visitor monitoring observations are 
usually sampled and extrapolated (Job et al., 2005; Mayer et al., 2010). 
In comparison, automated approaches such as the use of 
photo-electronic or pressure sensitive sensors, which are widely used for 
long-term visitor monitoring, have economic advantages (Arnberger, 
2007; Arnberger et al., 2016; Cessford & Muhar, 2003). However, these 
approaches cannot differentiate user groups based on recreational 
equipment. Furthermore, the sensors cannot discriminate between 
humans and wildlife, leading to suspiciously high numbers e.g. during 
the hunting season (Hodges, 2009). 

In this trade-off between operational costs and visitor monitoring 
comprehensibility, Arnberger et al. (2005) compared time-lapse video 
observations evaluated by a human observer against direct field obser-
vations. With technical improvements and decreasing prices, commer-
cially available (surveillance) cameras can be utilized in the domain of 
managing protected areas and other recreational landscapes (Arnberger, 
2007; Cessford & Muhar, 2003). These devices differ in image resolu-
tion, sensor type (usually optical) and operational mode, e.g. continuous 
video recordings, time-lapse photography (Arnberger et al., 2005; 
Kahler & Arnberger, 2008) or motion-triggered recordings (Czachs & 
Brandenburg, 2014; Lupp et al., 2016; Miller et al., 2017). The 
deployment of the latter is most common, as triggered trail cameras are 
familiar to staff working in protected areas due to their use in wildlife 
monitoring (Kays et al., 2011). 

However, using cameras in this domain still has some practical 
limitations. First, theft and vandalism may occur (Czachs & 

Brandenburg, 2014). Secondly, ethical aspects and the respective legal 
frameworks need to be considered. In Germany for example, among 
other regulations, a signage is required to inform visitors about ongoing 
camera observations, data needs to be destroyed at the end of the 
project, and individuals may not be identified at any time (BDSG, 2018). 
Third, and most important regarding long-term monitoring projects, the 
manual evaluation still requires large amounts of human resources and 
time. Therefore, this approach is not feasible in many cases. 

In 1995 MMuhar, Zemann, & Lengauer tried to tackle the latter 
limitation, by utilizing early computer vision techniques. Nevertheless, 
manual camera data interpretation is still the most common evaluation 
approach, although meanwhile, computer scientists have developed 
precise and fully automated image interpretation methods endowing 
automated cars with computer vision to avoid hitting pedestrians 
(Dollár et al., 2012; Zhang et al., 2017). Among such technologies, deep 
convolutional neural networks (CNN) are the most capable (Brunetti 
et al., 2018) and are also often deployed in environmental sciences too 
(e.g. Stiller et al., 2019; Wurm et al., 2019). Mechanically, such deep 
learning methods consist of multiple automatically feature engineering 
layers, which, provided that the training data is adequate, have proven 
to make very accurate predictions (Guo et al., 2016). Particularly in the 
domain of wildlife monitoring, and impelled by the Snapshot Serengeti 
dataset (Swanson et al., 2015), CNNs are often combined with triggered 
trail cameras (Falzon et al., 2020; Gomez Villa et al., 2017; Schneider, 
Taylor, & Kremer, 2018; Yousif et al., 2019) and have filled the gap 
between capturing image data in the field and analyzing it for man-
agement decision making. Notably, Yousif et al. (2019) deployed the 
method to particularly exclude pedestrians along with blank images 
triggered by moving vegetation in their ecological investigations. 
However, to the best of our knowledge, no such technologies have been 
deployed to explicitly count recreational visitors so far – the extensive 
reviews by Pickering et al. (2018) and Ziesler and Pettebone (2018) do 
not mention them, for instance. 

This paper introduces such a CNN to explicitly improve automatic 
visitor counting in outdoor recreation settings. We elaborate on how it 
competes against conventional approaches like the manual analysis of 
camera pictures and other established visitor counting methods. Our 
extensive assessment thus provides both researchers and practitioners 
with a possibility of making informed choices about which visitor 
monitoring approach to implement and for what kind of outdoor rec-
reational settings, considering costs, efforts, and expected results. 

This paper is structured as follows: After a presentation of our 
research area (section 2) and instruments utilized for visitor monitoring 
and different image evaluation methods (section 3), we first present the 
results of each counting approach individually, then compare the ob-
servations against each other, and finally present the annual cumulated 
number of visits counted by each approach at last (section 4). In section 
5, we summarize our results and discuss the advantages and limitations 
of the visitor monitoring approaches, and conclude their implications for 
future visitor monitoring in and outside protected areas in section 6. 

2. Study site 

Eldena Forest Nature Reserve (EFNR) is located at the southeastern 
rim of the city of Greifs-wald , Germany. The forest is owned by 
Greifswald University and is spread over 411 ha, including open spaces, 
forest trails and paths. It was designated as a nature protection area in 
1961. Some small forest patches (29 ha) consist of old growth oak and 
beech forests which are under strict protection without any management 
activities. Given its close vicinity to the city of Greifswald, EFNR is 
frequently visited by local residents, students, and tourists for recrea-
tion, study and other purposes; however, exact visitor numbers have 
never been estimated so far. This information would be very relevant for 
forest management planning as recreation is one of the major forest 
ecosystem services. Its valuation would also allow for the assessment of 
potential tradeoffs and synergies with other ecosystem services (Udas 
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et al., 2018). There are seven major entry points into EFNR, and based 
on the communication with local foresters, the entries at A, B, C and D 
are the ones mostly used due to their proximity to residential areas of 
Greifswald (Fig. 1). 

While conducting systematic visitor monitoring in EFNR, three 
different visitor counting methods were deployed at different entrances 
in 2015. At all seven entrances, manual in-situ visitor counting was 
carried out. In addition, at the most frequented entrances like at 
entrance A, a pressure sensor was installed, and triggered trail cameras 
were installed at entrances B, C, D and E. 

3. Methodology 

3.1. Manual counting 

As a fundamental benchmark, manual in-situ visitor counting was 
conducted following a visitor counting method used in many protected 
areas (Job et al., 2005, Job, Merlin, et al., 2016; Job, Schamel et al., 
2016; Job, 2008; Mayer et al., 2010; Woltering, 2012, Rein & Baláš, 
2015; Rein et al., 2019). The manual in-situ visitor counting was 
scheduled for a total of twelve days distributed throughout the year 
2015. We considered different weather conditions, public holidays, 
weekends and weekdays, and a combination of which gave four 
day-type categories. On each census day, trained students counted vis-
itors at each entrance for 10 h between 09:00 and 19:00. To avoid 
double counting from different entrances, only visitors entering the 
forest were counted. There were, however, a few missing field obser-
vations at entrances A, E, F and G because of logistical reasons. These 
gaps were substituted based on statistical relationships (see Ziesler & 
Pettebone, 2018), i.e. the percentage share and relation of visitor counts 
at other entrances for the same day or the same day-type category. 

To determine the annual cumulative number of visits in EFNR, the 

actual data from the sampled days were extrapolated. The extrapolation 
procedure accounted for seasonality, weekends/weekdays and the 
weather situation and is a standard procedure used by many studies (Job 
et al., 2005, Job, Merlin, et al., 2016, JJob, Schamel et al., 2016; Job, 
2008; Mayer et al., 2009, 2010; Woltering, 2012, Rein & Baláš, 2015; 
Rein et al., 2019). Daily weather data of Greifswald in 2015 was ob-
tained from the online database portal of the German Meteorological 
Service. Based on this data, Z-standardized values were estimated for 
daily mean air temperature (Tz), daily sunshine hours (Sz), and daily 
precipitation (Pz). Referring to a moving window of 15 days before and 
after the respective days, positive values of 1

3 (Tz + Sz − Pz) were 
considered to be good weather, whereas negative values were consid-
ered as bad weather (Mayer et al., 2009, 2010). For official public hol-
idays in 2015, the holiday calendar of the Federal State of 
Mecklenburg-Western Pomerania was considered. Table 1 depicts the 
different combinations of good and bad weather along with holidays and 
working days condensed into four day-type categories and their 
respective frequency in 2015. Finally, extrapolation of the number of 
visits for the missing dates was done by using a categorical linear 
regression without intercept. The βday− type estimates correspond to the 
mean value of visitor count per day-type category. 

Eventually, as the manual in-situ visitor data for the sampled days 

Fig. 1. Map of Eldena forest nature reserve.  

Table 1 
Categorization of the four day-types at EFNR in 2015.  

Day-type Combination N 

I Good weather + weekend/public holiday 56 
II Good weather + working day 136 
III Bad weather + weekend/public holiday 55 
IV Bad weather + working day 118 
Sum    365  
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was collected from 09:00 until 19:00, a supplement visitor number for 
the remaining hours was added as a percentage fraction of visitors 
entering the forest outside the field observation window estimated from 
the automated counters installed at entrances A, B, C, and D (increments 
presented in Tables 3 and 4). 

3.2. Pressure sensor 

Given the limited human resources for manual counting, the seasonal 
variation of visitation was captured with an automatic counting ma-
chine. An Ecocounter® pressure sensor was installed throughout the 
year 2015 at entrance A, one of the most frequented entrances suitable 
for the pressure sensor due to its narrow path. Whenever a person steps 
on it - according to its manufacturer it can detect weight fluctuations in a 
range of 10 kg to 3,5t - this is registered. Since the pressure sensor is able 
to detect bi-directional counts, both in- and outgoing visitor data was 
recorded on an hourly basis for each day (24 h). Although it is common 
to calibrate automated visitor counting (Pettebone et al., 2010), we 
explicitly refrained from calibrating the results allowing for rigid com-
parisons of the raw observations. The installation of the pressure sensor 
took four persons about 1.5 h. After that, the sensor worked incessantly 
and uploaded its data automatically to the digital cloud. 

3.3. Triggered trail cameras 

3.3.1. Hardware set-up 
Triggered trail cameras were installed in January 2015 at entrance B 

and in March 2015 at entrances C, D and E to automatically capture the 
visitors entering EFNR. Camera B was installed within the EFNR at a 
place diagonal to a forest path. Camera C was installed overlooking an 
intersection at the very entrance to EFNR, whereas camera D was 
installed along a narrow single trail leading to the EFNR. In all cases we 
chose the lowest image resolution and the motion-triggered defaults 
used for wildlife monitoring. Whenever a warm object moved within the 
infrared-detection field, an image was taken. In order to avoid 
vandalism (Arnberger et al., 2005; Czachs & Brandenburg, 2014), the 
cameras were hidden in bird boxes at a height of about 4 m in trees. 
Nevertheless, the camera at entrance E was stolen shortly after its 
installation whereas the cameras at entrances C and D were turned away 
from their original positions regularly, and eventually both devices were 
stolen. As a consequence, there was occasionally no imagery available 
for these entrances. Subsequently, the camera at entrance B had tech-
nical problems in mid-June 2015 and was replaced at the end of 
September 2015, resulting in about three months of data discontinuity. 
The overall sufficing observations for the missing days were eventually 
filled using the same annual extrapolation method defined earlier. 

Since this study compared manual image evaluation and automated 
image analyses regarding costs and performance, the archived images 
were first scrutinized to allow a direct comparison of the methods and 
reduce the amount of data. Using the Windows native Photo Viewer, 

images, that did not show any visitors (i.e. that captured animals) or 
those that were redundant (i.e. two consequent images showing the 
same person) were excluded from the analysis. 

3.3.2. Manual image evaluation 
The images for monitoring visitors in EFNR were first evaluated 

manually. Fig. 2 illustrates three semantics of image interpretation to 
estimate visitor numbers. Semantic 1 only includes actual persons visible 
on an image. In images, where people conceal each other while walking 
in staggered position or chipped at the edge of an image, they were 
counted as long as at least any body part was identifiable. In Semantic 2 
the same rules are applied, but in addition, also contextual decisions 
were made. Assuming for example that at least one child is inside a baby- 
stroller, this was considered a visitor. However, if a small child was seen 
walking beside the baby-stroller, then only the visible child was coun-
ted. Semantic 3 is similar to 2, but walking direction are distinguished as 
well. In this case, only visitors entering the EFNR were counted. To 
understand the impact of these semantics on the visitor count, a sample 
of 250 reference images were manually evaluated per entrance at B, C 
and D. 

The counting scheme of Semantic 3 contains most information rele-
vant to the domain of visitor monitoring. Therefore, following a con-
ventional approach (Czachs & Brandenburg, 2014; Kahler & Arnberger, 
2008; Miller et al., 2017), this semantic was applied to the entire set of 
archived images. To minimize personal observational biases, the visual 
analysis was conducted by a single person. When there were big groups 
visiting EFNR, a pair of one or two sequential images was carefully 
evaluated to make sure that all visitors are counted. The number of 
visitors entering the EFNR was documented on an hourly basis for each 
day in a spreadsheet. 

3.3.3. Automated image analyses 
As investigated by Zhang et al. (2017), advanced computer vision 

technologies such as deep CNNs can detect pedestrians at very high 
accuracies. To do so, many different network architectures for analyzing 
still imagery and corresponding training utilities are available (Brunetti 
et al., 2018). The design and training of a new network from scratch, 
however, requires appropriate training data, specific hardware, and 
expertise. For the purposes of this research, we therefore considered a 
pre-trained image analyzing framework. The most important decision 
drivers were computational performance and a broad training capable of 
differentiating multiple user groups. One such tool was developed by 
Redmon, Divvala, Girshick, & Farhadi (2016), respectively Redmon & 
Farhadi (2017), 2018) and, as its name indicates, You Only Look Once 
(YOLO) is very fast in grasping an image’s content. Therefore, it can be 
deployed in real-time applications (e.g. Han et al., 2020). As a result of 
the versatile training data, the pre-trained algorithm detects several 
object classes in an image, among which are persons, bicycles, back-
packs and dogs – categories of special interest to characterize visitors in 
recreational landscapes. 

Fig. 2. Illustration for manual image counting Semantics 1–3. Counted persons are colored. The person on the right side, carrying a backpack, is considered as 
leaving the EFNR. 
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When deploying YOLOv3 (Redmon & Farhadi, 2018) on an image, 
each detected object is returned with its consequent description. This 
includes the object’s location (i.e. a bounding box), a class label 
describing the object semantically (e.g. “person” or “car”) and finally the 
certainty as an indicator of the network’s classification confidence (e.g. 
0.92 = 92%). Eventually, the detections are filtered according to their 
certainty exceeding a predefined threshold. As this threshold could be 
compared with the minimum weight of a pressure sensor, naturally, this 
sensitivity threshold is inversely correlated with the number of detected 
visitors. In order to select an appropriate threshold, which by default is 
≥ 0.25, a sensitivity analysis was conducted with 0.05 increments. 
Therefore, the semantically labeled images were used as reference data. 
However, to rule out semantic biases, we restricted this assessment to 
images where Semantic 1, 2, and 3 agreed and referred to this subset as 
Semantic 0. Instances where the automatic approach underestimates the 
reference data are defined as false negatives. Vice versa, a false positive 
(an object wrongly labeled as “person”) is defined as overestimation. 
Lastly, the errors were assessed together with the fraction of correctly 
evaluated images. We expect that this extensive assessment helps to 
better understand which semantic is coded in the pre-trained CNN 
(Redmon & Farhadi, 2018). 

Lastly, the processing time of YOLO in an operational setup was 
measured on different platforms. To outline the plethora of potential 
applications, three distinct computers were used. Representing a small 
and local use-case, we used a low-cost microprocessor (RaspberryPi 3+). 
While the resources of this single board computer are very limited, we 
assume it could be used for ad-hoc image evaluations in the field. In the 
second case, we used a common laptop (Lenovo T460). Such and similar 
devices are used by many research groups and can be utilized for small 
or experimental projects. Last but not least, as we processed the com-
plete image archive of the study together, we benchmarked the pro-
cessing time on a high-performance computer with a dedicated 
graphical processing unit (NVIDIA P100). Here, we acknowledge that 
such equipment may only be available to scholars in the field of com-
puter vision and artificial intelligence. However, for large-scale projects, 
with cameras streaming their data to such a central server, this may 

allow for processing multiple images in real-time. 

3.4. Comparison of counting approaches 

Eventually we directly compared the results of all counting ap-
proaches. For each entrance the raw, hourly results per counting 
approach were set against each other using R and Excel. The statistical 
deviations were measured using Pearson’s correlation and a linear 
model without intercept. 

4. Results 

4.1. Outcome of the individual counting approaches 

4.1.1. Manual in-situ observations 
In total, more than 500 h of manual observations were conducted in 

the field, and a total of 1768 visits were counted entering the EFNR. As 
shown in Table 2, overall, the linear extrapolation based on day-types 
explains large parts of the observed variance (Ø adj. R2 = 0.780). The 
visitation estimates for day-type I and III are significant for all entrances. 
For similar weather conditions, the average number of visits is lower 
during working days (except for G, bad weather). However, for good 
weather conditions the coefficients’ standard error is larger on working 
days. That said, here the number of visits may even vary by the same 
magnitude as the estimated overall count. Regarding the estimates for 
the same type of working day, and respective weekends/holidays, it 
appears unexpected that on average slightly fewer visits occur at EFNR 
during good weather conditions. However, this is not the case on 
weekend/holidays at entrances F and G. Also, this trend cannot be 
confirmed on working days at entrance C, where approximately 44.4% 
more visits occur during good weather. 

4.1.2. Pressure sensor 
Over the course of 2015 (see Fig. 3), in total 21,912 visits were 

detected entering the EFNR as opposed to 20,439 visits leaving it (51.7% 
vs. 48.3%). The seasonal variations in visitation of EFNR are pronounced 

Table 2 
Visits counted manually from 09:00–19:00. a) Yearly extrapolation model, depicting average number of visits aggregated per day type category. b) Total extrapolated 
number.   

a) b) 

Average good weather Average bad weather Adj. R2 [MAE] Total Visits (between 09:00–19:00) 

weekend/PH working day weekend/PH working day   

βI  βII  βIII  βIV    

A 81.412 
(18.65) 
** 

23.104 
(22.84) 

116.841 
(18.65) 
*** 

61.587 
(16.15) 
** 

0.853 
[20.385] 

21,395 

B 54.839 
(14.24) 
** 

20.042 
(17.44) 
61.667 

(14.24) 
** 

32.000 
(12.33) 
* 

0.758 
[17.409] 

12,964 

C 33.333 
(7.378) 
** 

32.500 
(9.049) 
** 

49.000 
(7.389) 
*** 

22.500 
(6.399) 
** 

0.877 
[8.472] 

11,637 

D 23.851 
(7.759) 

14.000 
(9.503) 

27.013 
(7.759) 
** 

15.697 
(6.719) 
* 

0.677 
[7.771] 

6,578 

E 20.968 
(10.774) 
# 

6.236 
(13.195) 

37.982 
(10.774) 
** 

13.841 
(9.331) 

0.550 
[9.748] 

5,745 

F 15.641 
(2.073) 
*** 

4.735 
(2.539) 
# 

12.500 
(2.073) 
*** 

9.391 
(2.073) 
*** 

0.909 
[2.163] 

3,315 

G 24.108 
(4.836) 
** 

10.907 
(5.922) 

17.982 
4.836) 
** 

20.317 
(4.188) 
** 

0.837 
[5.874] 

6,220 

The numbers within the brackets indicate (): standard error and []: mean average error; PH: Public holiday; Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05, 
#p < 0.1. 
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Table 3 
Visits detected by pressure sensor. a) Yearly extrapolation model, depicting average number of visits aggregated per day type category. b) Total absolute number. c) 
Share of visits outside the manual in-situ observation window.   

a) b) c) 

Average good weather Average bad weather Adj. R2 [MAE] Total Share of visits 19:00–09:00 

weekend/PH working day weekend/PH working day    

βI  βII  βIII  βIV     

AIn 104.411 
(5.453) 
*** 

59.382 
(3.499) 
*** 

63.582 
(5.502) 
*** 

38.144 
(3.756) 
*** 

0.709 
[30.195] 

21,921 12.2% 

AOut 88.338 
(4.688) 
*** 

55.360 
(3.008) 
*** 

60.691 
(4.730) 
*** 

39.195 
(3.229) 
*** 

0.733 
[25.605] 

20,439 15.4% 

The numbers within the brackets indicate (): standard error and []: mean average error; PH: Public holiday; Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05, 
#p < 0.1. 

Table 4 
Visits counted with CameraManual. a) Yearly extrapolation model, depicting average number of visits aggregated per day-type category. b) Total extrapolated number. 
c) Share of visits outside the manual in-situ observation window.   

a) b) c)  

Average good weather Average bad weather Adj. R2 [MAE] Total Share of visits 19:00–09:00 

weekend/PH working day weekend/PH working day    

N βI  βII  βIII  βIV     

B 208 47.629 
(5.879) 
*** 

34.438 
(4.071) 
*** 

45.548 
(6.247) 
*** 

25.493 
(4.187) 
*** 

0.518 
[23.894] 

12,864 14.8% 

C 81 52.400 
(4.276) 
*** 

21.387 
(2.429) 
*** 

35.813 
(3.381) 
*** 

14.292 
(2.760) 
*** 

0.817 
[9.571] 

9,499 11.5% 

D 55 39.889 
(3.178) 
*** 

14.381 
(2.080) 
*** 

23.111 
(3.178) 
*** 

7.562 
(2.383) 
** 

0.828 
[6.195] 

6,353 14.7% 

The numbers within the brackets indicate (): standard error and []: mean average error; PH: Public holiday; Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05, 
#p < 0.1. 

Fig. 3. Visits per day detected by pressure sensor at entrance A.  
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with two culmination periods in April and October concurring with 
blossoming and blooming in spring and leaf coloration in autumn, 
respectively. Midsummer, however, shows lower visitation, while 
winter months have the lowest overall frequentation. Further, regarding 
the missing observation time window during manual counting, we 
measured a fraction of 12.2% entries between 19:00 and 09:00 at 
entrance A. 

Although the pressure sensor worked flawlessly for 365 days, for a 
better comparison with the other counting approaches, we present the 
average number of visits per day type by fitting a linear extrapolation 
model. At this point, it is interesting to stress that Table 3 shows similar 
visitation patterns with regard to equal weather conditions as the ones 
described above. However, for similar types of working day, and 
respective weekend/holiday, the frequency of visitation registered by 
the pressure sensor is higher for good weather. Besides, Table 3 also 
shows that the rigid extrapolation model is capable of explaining 70.9% 
of the overall variance with a mean average error (MAE) of approxi-
mately 30 visits. 

4.1.3. Camera data 

4.1.3.1. Manual evaluation. Three different counting schemes were 
applied to assess the impact of various counting semantics. Using a 
sample of 250 images from entrances B, C and D each, a total of 1,150, 
1179 and 1153 persons were counted using Semantics 1, 2, or 3 
respectively. Overall, the counts agreed in 90.1% of the images and the 
corresponding correlation coefficients between the three image inter-
pretation semantics are very high. Nevertheless, these coefficients stress 
the semantic details as well. Pearson r is highest between Semantic 1 and 
2 (r12 = 0.984) and tends to be lower for Semantic 3, which exclusively 
focused on persons entering the EFNR (r13 = 0.947; r23 = 0.944). The 
latter two values reflect that Semantic 2 and 3 share their definition of 
visitors (i.e. expect a child inside a baby-stroller), while Semantic 1 
literally counted persons only. 

Regarding the interests of visitor monitoring in outdoor recreation 
such as avoiding double counting, Semantic 3 was applied on the 

complete image archive. In total, a single researcher devoted circa 40 h 
counting visitors entering EFNR. Thereby, in total 7,352, 2103 and 900 
visits were manually counted at entrances B, C, and D respectively. As 
the number of valid observation days was limited (see N in Table 4) due 
to technical issues, vandalism and theft, deriving linear extrapolation 
models based on day-types I-IV was obligatory again. When investi-
gating the visitation patterns, although less stark, the same plausible 
trends as observed by the pressure sensor are confirmed. 

4.1.3.2. Automated approach. Our goal is to assess the potential to 
automate camera evaluations at comparable precision. First, we inves-
tigated YOLO’s detection certainties and identified an appropriate 
threshold using the semantically labeled reference images. However, to 
rule out semantic biases, we also conducted sensitivity analyses with the 
90.1% samples belonging to Semantic 0 (N = 682). Looking at Fig. 4a, it 
is clear that this dataset systematically outperforms Semantic 1–3. After 
starting at a certainty threshold ≥0.05 (where on average 9.410 false 
positives are detected per image, see Fig. 4b), we initially see a steep 
increase in accuracy. At thresholds ranging between ≥0.15 and ≥0.25, 
we see that up to 92% of the reference images were evaluated correctly, 
before a slow decrease is measured again. Eventually, when requiring 
YOLO’s predictions to be absolutely confident (certainty = 1), overall 
60% of the reference images were interpreted correctly (as here on 
average 0.526 false negatives occur, see Fig. 4b). At a threshold of ≥0.1, 
however, YOLO manages to balance best between detecting neither too 
few, nor too many people (0.050 false negative and 0.041 false positives 
per image respectively, see Fig. 4b). Hence, based on these consider-
ations we set the sensitivity threshold to ≥0.1 prediction certainty, for 
evaluating of the complete data set deploying the CNN. 

Considering the 13,377 images at entrances B, C and D, a total 
number of 18,536 persons were detected. Then we applied the annual 
extrapolation method at each entrance (see Table 5a). Again, all p- 
values of the linear coefficients are highly significant (<0.01). However, 
when comparing the mean visit count per day-type directly against the 
other models presented above, it is crucial to bear in mind that YOLO did 
not differentiate walking directions. As a consequence, these numbers 

Fig. 4. Sensitivity analyses using YOLO and manually labeled images. a) Percentage of correct evaluated images regarding semantic 0–3. b) Mean amplitude of error.  
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include entering as well as leaving visitors. The relative visitation pat-
terns however align (except lower visitation during good weather on 
weekends/public holidays at entrance B). 

For a better understanding of how the CNN interprets the images, 
Fig. 5 illustrates some common scenarios. Although at the cost of posi-
tional errors and detection certainty, the two more challenging examples 
(Fig. 5c and d) show that YOLO is capable of distinguishing visitors 
walking in staggered position. Further, the pre-trained network also 
counted objects important in the context of visitor monitoring in pro-
tected areas: 2380 bicycles, 2336 backpacks and, among other cate-
gories, 1839 dogs. Interestingly, the share of particular objects per 
image varies between the entrances (see Table 6). For example, parked 
cars were highest at entrance C and the share of bicycles lowest at 
entrance D, where the narrow trail with protruding roots reduces the 
comfort of cycling. 

Lastly, we present the number of images evaluated per minute using 
YOLO on three different processing platforms, as this information might 
be relevant for future studies. The single board computer (RaspberryPi 
3+) analyses 1.2 images per minute. Using a laptop (Lenovo T460) is 
approximately three times faster (3.3 images per minute). The high- 
performance computer with a dedicated graphical processing unit 
(NVIDIA P100) was capable of processing 21.9 images per minute. 

Table 5 
Visits counted with CameraYOLO. a) Yearly extrapolation model, depicting average number of visits aggregated per day-type category. b) Total extrapolated number.   

a) b)  

Average good weather Average bad weather Adj. R2 [MAE] Total  

weekend/PH working day weekend/PH working day   

N βI  βII  βIII  βIV    

B 229 62.429 
(9.630) 
*** 

50.878 
(6.892) 
*** 

66.569 
(11.032) 
*** 

40.068 
(7.304) 
*** 

0.410 
[42.767] 

18,799 

C 81 114.600 
(8.438) 
*** 

52.323 
(4.793) 
*** 

73.375 
(6.671) 
*** 

31.042 
(5.447) 
*** 

0.848 
[18.580] 

21,232 

D 55 87.222 
(6.130) 
*** 

25.909 
(3.921) 
*** 

44.111 
(6.130) 
*** 

13.813 
(4.598) 
** 

0.844 
[11.766] 

12,464 

The numbers within the brackets indicate (): standard error and []: mean average error; PH: Public holiday; Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05, 
#p < 0.1. 

Fig. 5. Staged images with YOLO predictions illustrating its pre-trained semantic. Pink boxes refer to persons, red to equipment, and yellow to dogs. Each bounding 
box also includes a label specifying the predicted class and its certainty as decimal number. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 6 
Objects per image counted with CameraYOLO at each entrance.   

Person Backpack Handbag Bicycle Dog Car 

B 1.45 0.20 0.13 0.45 0.15 0.01 
C 1.40 0.17 0.14 0.51 0.14 0.24 
D 1.40 0.10 0.07 0.21 0.12 0.00  
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4.2. Comparison of counting approaches 

Based on the hourly observations, Table 7 shows the correlations 
between the different counting approaches for all concerned entrances. 
At entrance A, where manual in-situ observations were conducted next 
to a pressure sensor on five days, we found a strong and highly signifi-
cant correlation (R = 0.783, p < 0.001). The respective linear model 
fitted through the 50 h of simultaneous observations further revealed 
that the automated approach does account for 88.4% of the visits 
counted by the manual in-situ observer (adj. R2 = 0.799, p < 0.001). 

Regarding the other two entrances where manual in-situ counting 
was conducted along with ongoing camera observations, only the 
manual camera evaluations at entrance B correlate significantly with the 
corresponding 44 h of manual in-situ observations. However, the 
regression models comparing the two camera evaluation approaches 
against manual in-situ observations are significant at both entrances. 
Unfortunately, at entrance D we could not relate the camera count to the 
in-situ counting, as the camera was stolen before the field observations 
started. 

When comparing the camera evaluations against each other, both 
image evaluation approaches strongly correlate at very high significance 
levels (Ør = 0.818, p < 0.001). Further, it is interesting to note the 
highly significant regression coefficients between the two different 
image evaluation approaches as well. In respect to the differences of 
Semantic 3 and YOLO, the slopes ranging between 0.478 and 0.570 can 
be interpreted as a percentage of Ø51.4% visitors entering the EFNR at 
these particular entrances. 

To aid the interpretation of the partly contradictory results at 
entrance B, it is important to assess them specifically. When comparing 
the in-situ counts with the manual camera evaluations, similar numbers 
of visits were observed (Fig. 6a). However, further investigations of the 
scatterplots at entrance B (Fig. 6b and c) revealed four exceptional 
outliers as well. As documented in the manual image interpretation 
notes, on two days, several school classes entered EFNR before 09:00. 
When the group left the EFNR a few hours later, this was recorded by 
YOLO as its pre-trained semantic is not capable of differentiating di-
rections (Fig. 6b). When the outliers highlighted rectangularly are 
excluded, the statistical measures parallel those of entrance C (see values 
in brackets, Table 7). 

Further, CameraYOLO results also often correlate significantly but 
with low to medium strength to the in-situ personal counts and the 
pressure sensor at the other entrances (see Appendix 1). This shows that 
YOLO is able to reflect the visitation trends over the year even though 
observations did not always take place exactly at the same locations. 

4.3. Annual visitation numbers to EFNR 

Last but not least, the annual number of visits to ENFR was extrap-
olated for each of the counting approaches. We added a supplement to 

the manual in-situ counts to compensate for the missing observation 
hours (see Tables 3c and 4c). As YOLO was not able to distinguish 
walking directions, we rated its number proportional to the manual 
image assessment at entrances B, C and D (see regression coefficient 
Table 7). Fig. 7 depicts the number of visits for each entrance using the 
available visitor monitoring approach. Cumulated over the year 2015, 
the number of visits to the EFNR via entrances A-G ranges between 
65,605 and 76,719. 

5. Discussion 

To assess the source of observational uncertainties, the significant 
differences between the visitor monitoring approaches need to be dis-
cussed. We do so in a chronological order. As deployed in multiple 
studies before (Job et al. 2005, Job, Merlin, et al., 2016; Job, 2008; 
Mayer et al., 2010), manual in-situ observations are a trusted approach 
to monitor visitors in protected areas. In this study, however, not all 
students instructed to conduct the observations showed up at the census 
line and recorded the counting on an hourly basis, although guidelines 
were provided. Hence, this approach does not only require a lot of re-
sources in terms of interviewer organization, availability, training and 
payments but also control and data digitization. Additionally, this 
approach is not applicable on a daily basis for long-term projects and 
relies on a solid sampling scheme and extrapolation methods. In our 
study, a small sample size together with a high variance led to partly 
insignificant extrapolation coefficients and relatively large standard 
errors (see Table 2). Further, additional extrapolation is needed to cover 
visitation in the early morning, late evening and night hours. In this 
context, machine learning could provide interesting models for extrap-
olating visitor numbers (e.g. Rasanen et al., 2009; Taylor & Letham, 
2017). 

From a strictly statistical point of view, the pressure sensor may be 
considered a reliable instrument for visitor monitoring. In our explor-
ative setup, this approach counted visitors all year without failures. 
Nevertheless, in some cases, we observed visitors avoiding stepping on 
the sensor, particularly on rainy days when there was some water-
logging on the slab. Therefore, careful choice of location and installation 
of pressure sensor slabs is crucial. Further, the sensitivity of the counter 
and the possibility of counts being triggered by baby strollers, dogs or 
wild animals has not been investigated so far. This raises some doubts 
about the precision of pressure sensor measurements (see also Ankre 
et al., 2016). 

Before we discuss the image evaluation methods in particular, it is 
important to stress the limitations of triggered trail cameras in general. 
These relate not only to the legal and ethical aspects mentioned earlier, 
but also to maintenance, vandalism, and theft. Actually, all cameras 
were stolen before the end of our monitoring phase, which lead to the 
missing comparisons indicated in Table 7. Additionally, there were 
multiple gaps of missing observation dates, as cameras ran out of battery 

Table 7 
Statistical covariance analyses between counting approaches at entrances A-D. N corresponds to total hours of common observations.   

X Y N Correlation Regression 

Pearson’s R Slope Adjusted R2 

A Manual in-situ Pressure sensor 50 0.783 *** 0.884*** 0.799 
B Manual in-situ CameraManual 44 0.549 *** 0.791 *** 0.639 
B Manual in-situ CameraYOLO 44 (43) 0.007 (0.347 *) 1.317 *** (1.317 ***) 0.235 (0.575) 
B CameraYOLO CameraManual 1526 (1522) 0.786 *** (0.852 ***) 0.570 *** (0.639 ***) 0.715 (0.839) 
C Manual in-situ CameraManual 17 0.412 0.523 *** 0.684 
C Manual in-situ CameraYOLO 17 0.335 0.979 *** 0.670 
C CameraYOLO CameraManual 691 0.847 *** 0.478 *** 0.846 
D Manual in-situ CameraManual 0 / / / 
D Manual in-situ CameraYOLO 0 / / / 
D CameraYOLO CameraManual 379 0.821 *** 0.494 *** 0.825 

Missing data is indicated by ‘/‘. Regarding entrance B, coefficients after excluding four outliers with more than 100 visitors per hour are presented in brackets. See also 
Appendix 1 combining all approaches at all entrances; Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05. 
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power. Each triggered image captured by the device costs energy and, as 
a consequence, the battery runtime is proportional to the visitor number 
and can only be guessed. Also, regarding triggered trail cameras in 
particular, if a visitor moves faster than the device’s activation time, the 
actual image will be blank (Miller et al., 2017). We assume this led to an 
undercount particularly at entrances B and C, where proportionally 
more cyclists were captured (see Table 5). Practitioners should consider 
the optimized camera protocol developed by Miller et al. (2017) in 
advance of starting future projects, particularly with regard to the 
camera’s field of view, the trigger mechanism, and the file writing speed. 

Nevertheless, cameras for visitor monitoring can balance well be-
tween the high information gain retrieved by in-situ observations and 
the corresponding costs. The manual image interpretation produces the 
most comprehensive visitation numbers. The records can easily be 
taken, and it offers the possibility of going back and forth between a set 
of images, allowing for very precise counting even in highly crowded 
scenes (Arnberger et al., 2005). In this context, it is also important to 
stress that if the manual image interpretation is done by different per-
sons, clear semantics are required as a guideline to exclude 
uncertainties. 

The pre-trained network by Redmon and Farhadi (2018) turned out 
to be transferable to visitor monitoring in protected areas and other 
recreational landscapes. The highly significant and strong correlations 
between CameraYOLO and CameraManual show that this CNN is capable of 
producing comparable results in general; but, at dramatically reduced 
evaluation costs. Even without specialized hardware the images can be 
evaluated in the background of a common laptop computer. Further 
speed and accuracy enhancements may be expected from the updated 
YOLO v4 (Bochkovskiy et al., 2020). Additionally, we recommend 

testing and retraining other CNNs to meet the needs of visitor moni-
toring in protected areas. A semantically labeled training dataset would 
allow transferring the approach from detecting recreational equipment 
to actual outdoor recreation user groups. In this context, the training 
dataset could also include outdoor specific settings. This involves 
crowded images as well as fast moving and therefore blurred objects in 
particular. Finally, the automated image evaluation has another 
advantage. As analogous integrated circuits have become smaller and 
more effective in recent years, single-board computers may be deployed 
into the field (de Oliveira & Wehrmeister, 2018). Therewith, it is 
possible to evaluate the images in real time. While this live-processing 
approach has disadvantages in terms of auditability, as no imagery is 
actually recorded, it addresses the aforementioned privacy issues. That 
said, further configuration of the utilized software and hardware is 
needed to reach this goal. Regarding the possibilities of such a frame-
work in general though, computer vision-based visitor monitoring is not 
only possible and suitable for outdoor recreation in protected areas but 
also for a much wider array of visitor counting settings. For example, 
Brown et al. (2016) gathered a network of webcams in cities or touristic 
sites to monitor the natural environments’ phenology, which could be 
directly analyzed by YOLO or similar approaches too. 

With respect to the annual extrapolation method, the higher annual 
number of visits from the manual in-situ counts might reflect a certain 
bias of actual counting days towards the spring season. This corresponds 
with the highest overall visitation frequency (see Fig. 3) leading to 
higher annual numbers due to the extrapolation compared to the auto-
mated approaches. The same reason might also explain why Table 2 
reports higher differences between weekends/public holidays and 
weekdays (same weather conditions prevailing) for the manual in-situ 

Fig. 6. Visualization of common observation data at entrance B, corresponding to Table 7. Squares are considered outliers and may be excluded.  

Fig. 7. Presentation of extrapolated annual number of visits per entrance and visitor monitoring approach.  
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counting than Table 3 for the pressure sensor. If, for instance, the 
counting days fall on public holidays in spring showing high frequen-
tation (see Fig. 3), this leads to more pronounced differences than the 
pressure sensor values balanced over the whole year. Further, the lower 
difference of pressure sensor counts between weekends and weekdays 
with good weather compared to the manual in-situ counting could be 
also explained by different recreational behavior over the whole year. In 
midsummer, people most likely prefer the sea/beaches of the Baltic Sea 
farer away from the city for trips on weekends (also a possible expla-
nation for lower overall visitation during midsummer, in combination 
with summer vacations spent elsewhere), while on weekdays they stay 
closer to their home and recreate in the EFNR. This could explain why 
the differences are lower when one considers the whole year as the 
weekend offers more outdoor recreation possibilities than weekdays. 
Likewise, the result from manual in-situ counting unexpectedly showed 
that on average slightly less visits occur to EFNR during good weather 
conditions compared to bad (Table 2). This appears counter intuitive at 
first, but it makes sense considering the recreational behavior of the 
citizens in Greifswald. EFNR is near and a very suitable destination for 
outdoor recreation even under adverse weather conditions, while trips 
to the Baltic Sea or other nearby destinations (e.g. the islands of Rügen 
or Usedom) are most likely preferred on warmer and sunnier days. This 
is also reflected in the camera-counting results for entrance B. 

6. Conclusion 

In this study we found that with triggered trail camera images and 
machine learning based computer vision the visitation frequency can be 
derived with high accuracy and comparatively low costs. This conclu-
sion is based on conducting four visitor monitoring approaches at seven 
entrances to a protected forest area. The functional and physical dif-
ferences of each entrance became evident with respect to overall 
frequentation, the fraction of visits outside the manual in-situ counting 
time window, and visitor types. The deployed counting approach needs 
to match these properties and the overall research questions. Manual in- 
situ counting can be very precise as it can distinguish between user 
groups, and also allows for parallel interviews which are required for a 
comprehensive management of protected areas (Spenceley et al., 2021). 
At the same time, this approach is very expensive for long-term moni-
toring while reducing the number of observation days introduces large 
uncertainties and compromises annual representativeness. Therefore, 
we recommend using this approach only at relatively high frequented 
sites where as many interviews as possible could be done in parallel to 
visitor counting. However, to further validate results, to better test CNNs 
at crowded locations and to add detailed yearly/seasonal visitation 
trends to visitor monitoring projects, we strongly argue for installing 
automatic counters (pressure or infrared sensors) and cameras at the 
exact same locations where manual counting is done to ensure the 
highest data comparability. Analog thereto an investigation of auto-
mated cameras’ accuracy along different constraints such as crowding 
and weather would be interesting. 

Less or very low frequented sites should be covered by automatic 
counters (or cameras). Pressure sensors are technically reliable and 
suitable for long-term monitoring projects. Although such devices are 
relatively expensive to buy, not easily portable and their installation 
requires time and experience, there were no issues related to mainte-
nance or vandalism. However, there are some limitations with respect to 
the broad requirements of managing protected areas. For instance, they 
cannot distinguish between user groups and some doubts remain about 
the specificity of the pressure sensor to count humans only. 

The use of automated cameras, however, allows for comprehensive 
visitor monitoring with regard to reproducibility and differentiating 
user groups (which cannot be done by conventional automatic counters) 
– an important aspect in mitigating recreational frictions or wildlife 
disturbance conflicts. However, triggered trail cameras, more commonly 
used to survey wildlife, come with the shortcomings of huge time and 

financial costs when evaluating data, together with the risk of human 
error during image processing. The use of computer vision can drasti-
cally reduce these problems. The field experiments conducted in this 
study showed that YOLO (Redmon & Farhadi, 2018), as one of many 
CNNs, reliably derived similar visitation counts compared to manual 
image evaluations. Nevertheless, camera installation takes time and 
effort, regular maintenance (batteries, storage cards) and the automated 
evaluation requires specific hardware and expertise as well. Other 
non-trivial issues are theft, vandalism and the short lifespan of batteries, 
especially in the winter season where potential snow cover leads to 
impairment of camera functions. Further, legal issues must be clarified 
whenever the use of cameras is planned. Hopefully, future works will 
spawn live-processing devices, so that no imagery needs to be stored at 
all. This however, would require a very reliable algorithm. We therefore 
strongly recommend retraining a CNN particular to the needs of visitor 
monitoring in protected areas and other recreational landscapes. In 
doing so, automated computer vision will detect a manifold width of 
detectable objects, like semantic visitor types, vehicle types (as sug-
gested by Thórhallsdóttir, Ólafsson, & Jóhannesson (2021)) and much 
more outdoor equipment in the future. In case of wildlife monitoring, 
the Snapshot Serengeti project (Swanson et al., 2015) challenged big data 
scientists to build the best algorithms. So, why not launch a comparable 
initiative for the issues mentioned regarding visitation in 
outdoor-recreation settings? Along thereto, CNNs could also be 
deployed in the emerging field of social media-based visitor monitoring 
(Ghermandi & Sinclair, 2019; Sinclair et al., 2020a, 2020b; Teles de la 
Mota & Pickering, 2020) where it might help to automatically detect and 
analyze the contents of pictures taken and posted by visitors. Lastly, 
using the very same camera sensor, multiple aspects of the respective 
protected areas and other recreational landscapes can be monitored in 
parallel: wildlife (e.g. Falzon et al., 2020), vegetation (e.g. Brown et al., 
2016) and visitors too. 
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Appendix 1. Statistical covariance analyses between counting approaches combining all approaches at all entrances. Comparisons are 
presented into one direction only. They can be reversed by applying 1/slope  

X Y Correlation Pearson’s R Regression Slope Adjusted R2 

Entrance Method Entrance Method 

A InSitu A Ecocounter 0.783 *** 0.884 *** 0.799 
A InSitu B InSitu 0.403 ** 0.435 *** 0.498 
A InSitu B CameraManual 0.727 *** 0.566 *** 0.792 
A InSitu B CameraYOLO 0.131 0.885 *** 0.274 
A InSitu C InSitu 0.338 * 0.285 *** 0.457 
A InSitu C CameraManual 0.539 * 0.214 *** 0.715 
A InSitu C CameraYOLO 0.200 0.366 *** 0.575 
A InSitu D InSitu 0.356 * 0.230 *** 0.456 
A InSitu E InSitu 0.357 0.281 ** 0.488 
A InSitu F InSitu 0.313 0.077 ** 0.517 
A InSitu G InSitu − 0.212 0.077 − 0.044 
A Ecocounter B InSitu 0.267 ** 0.401 *** 0.417 
A Ecocounter B CameraManual 0.304 *** 0.553 *** 0.279 
A Ecocounter B CameraYOLO 0.274 *** 0.714 *** 0.254 
A Ecocounter C InSitu 0.314 *** 0.325 *** 0.424 
A Ecocounter C CameraManual 0.447 *** 0.267 *** 0.477 
A Ecocounter C CameraYOLO 0.489 *** 0.514 *** 0.488 
A Ecocounter D InSitu 0.398 *** 0.199 *** 0.417 
A Ecocounter D CameraManual 0.380 *** 0.184 *** 0.463 
A Ecocounter D CameraYOLO 0.516 *** 0.336 *** 0.528 
A Ecocounter E InSitu 0.429 *** 0.184 *** 0.461 
A Ecocounter F InSitu 0.267 *** 0.114 *** 0.328 
A Ecocounter G InSitu − 0.089 *** 0.166# 0.068 
B InSitu B CameraManual 0.549 *** 0.791 *** 0.639 
B InSitu B CameraYOLO 0.007 1.317 *** 0.235 
B InSitu C InSitu 0.157 0.425 *** 0.325 
B InSitu C CameraManual 0.283 0.303 *** 0.592 
B InSitu C CameraYOLO 0.301 0.585 *** 0.620 
B InSitu D InSitu 0.245 * 0.285 *** 0.316 
B InSitu E InSitu 0.162 0.236 *** 0.298 
B InSitu F InSitu 0.250 0.143 *** 0.304 
B InSitu G InSitu − 0.072 0.220 * 0.077 
B CameraManual B CameraYOLO 0.786 *** 1.255 *** 0.715 
B CameraManual C InSitu 0.344 * 0.521 *** 0.493 
B CameraManual C CameraManual 0.049 0.123 *** 0.124 
B CameraManual C CameraYOLO 0.100 * 0.272 *** 0.141 
B CameraManual D InSitu 0.385 * 0.367 *** 0.430 
B CameraManual D CameraManual 0.151 * 0.278 *** 0.256 
B CameraManual D CameraYOLO 0.189 ** 0.439 *** 0.234 
B CameraManual E InSitu 0.219 0.367 *** 0.360 
B CameraManual F InSitu 0.153 0.150 ** 0.320 
B CameraManual G InSitu − 0.287 0.169 − 0.003 
B CameraYOLO C InSitu − 0.014 0.136 *** 0.208 
B CameraYOLO C CameraManual 0.048 0.085 *** 0.126 
B CameraYOLO C CameraYOLO 0.095 * 0.184 *** 0.140 
B CameraYOLO D InSitu 0.388 * 0.236 *** 0.466 
B CameraYOLO D CameraManual 0.102 0.206 *** 0.216 
B CameraYOLO D CameraYOLO 0.127 * 0.304 *** 0.185 
B CameraYOLO E InSitu 0.418 # 0.265 *** 0.552 
B CameraYOLO F InSitu 0.264 0.098 *** 0.399 
B CameraYOLO G InSitu − 0.184 0.034 − 0.028 
C InSitu C CameraManual 0.412 0.523 *** 0.684 
C InSitu C CameraYOLO 0.335 0.979 *** 0.670 
C InSitu D InSitu 0.127 0.297 *** 0.239 
C InSitu E InSitu 0.169 0.269 *** 0.253 
C InSitu F InSitu 0.209 0.196 *** 0.273 
C InSitu G InSitu − 0.098 0.438 * 0.096 
C CameraManual C CameraYOLO 0.847 *** 1.772 *** 0.846 
C CameraManual D InSitu 0.154 1.124 ** 0.507 
C CameraManual D CameraManual 0.310 *** 0.494 *** 0.419 
C CameraManual D CameraYOLO 0.444 *** 0.934 *** 0.493 
C CameraManual E InSitu − 0.544 0.889 0.369 
C CameraManual F InSitu 0.322 0.371 *** 0.694 
C CameraManual G InSitu 0.234 0.390 * 0.300 
C CameraYOLO D InSitu − 0.007 0.572 ** 0.473 
C CameraYOLO D CameraManual 0.397 *** 0.266 *** 0.456 
C CameraYOLO D CameraYOLO 0.497 *** 0.485 *** 0.520 
C CameraYOLO E InSitu 0.570 0.356 * 0.774 
C CameraYOLO F InSitu 0.252 0.204 ** 0.663 

(continued on next page) 
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(continued ) 

X Y Correlation Pearson’s R Regression Slope Adjusted R2 

Entrance Method Entrance Method 

C CameraYOLO G InSitu 0.094 0.171 * 0.253 
D InSitu E InSitu 0.179 0.524 *** 0.234 
D InSitu F InSitu 0.314 0.185 ** 0.301 
D InSitu G InSitu 0.064 0.554 ** 0.242 
D CameraManual D CameraYOLO 0.821 *** 1.669 *** 0.825 
E InSitu F InSitu − 0.115 0.155 0.052 
E InSitu G InSitu 0.028 0.626 ** 0.225 
F InSitu G InSitu − 0.033 1.045 * 0.186 

Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05, #p < 0.1. 
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