Qiu, Chunping and Liebel, Lukas and Hughes, Lloyd H. and Schmitt, Michael and Körner, Marco and Zhu, Xiao Xiang (2022) Multi-task Learning for Human Settlement Extent Regression and Local Climate Zone Classification. IEEE Geoscience and Remote Sensing Letters, 19, p. 1000705. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.3037246. ISSN 1545-598X.
PDF
- Published version
4MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/9269372
Abstract
Human settlement extent (HSE) and local climate zone (LCZ) maps are both essential sources, e.g., for sustainable urban development and Urban Heat Island (UHI) studies. Remote sensing (RS)- and deep learning (DL)-based classification approaches play a significant role by providing the potential for global mapping. However, most of the efforts only focus on one of the two schemes, usually on a specific scale. This leads to unnecessary redundancies since the learned features could be leveraged for both of these related tasks. In this letter, the concept of multitask learning (MTL) is introduced to HSE regression and LCZ classification for the first time. We propose an MTL framework and develop an end-to-end convolutional neural network (CNN), which consists of a backbone network for shared feature learning, attention modules for task-specific feature learning, and a weighting strategy for balancing the two tasks. We additionally propose to exploit HSE predictions as a prior for LCZ classification to enhance the accuracy. The MTL approach was extensively tested with Sentinel-2 data of 13 cities across the world. The results demonstrate that the framework is able to provide a competitive solution for both tasks.
Item URL in elib: | https://elib.dlr.de/138487/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Multi-task Learning for Human Settlement Extent Regression and Local Climate Zone Classification | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | January 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 19 | ||||||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2020.3037246 | ||||||||||||||||||||||||||||
Page Range: | p. 1000705 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | human settlement mapping, remote sensing, climate zone classification | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||
Deposited On: | 26 Nov 2020 17:39 | ||||||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 13:49 |
Repository Staff Only: item control page